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1. Introduction.
Let K be a compact subset of R whose boundary is of class C

and/2=R--K. Consider the following equation o SchrSdinger type
in 2 with the Dirichlet boundary condition"

l-- lq(x) + q(x)q(x) 2(x),

Furthermore, let us consider the SehrSdinger equation of the form
( 2 ) lqg(x) + q(x)(p(x) + nz:(x)q(x)
in the whole space R, where Z(x) is the characteristic function of K
and n is a positive integer.

The purpose of the present paper is to show that the negative
eigenvalues of (1) can be obtained as a limit of those of (2) when n
tends to infinity. Convergence of eigenfunctions will also be discussed.

The idea of regarding (1) as the limit problem of (2) is closely
related to the penalty method (cf. Lions [3]). It may be noted that

Z in (2) can be replaced by any function f which is measurable,
positive and bounded on K and is zero outside K. In a physical sense
Problem (1) is sometimes referred to as the hard core model. Thus,
as far as eigenvalues and eigenfunctions are concerned, the hard core,
i.e. the infinite potential on K, can be approximated by potentials
which are strongly repulsive on K. Furthermore, looking in the
reverse way, one may use the hard core to approximate such a po-
tential on K.

Among related works we mention those of Titchmarsh [6] and
Konno [2]. Titchmarsh obtained the eigenfunction expansions for a
finite two-dimensional region by making q(x)c outside the region
considered. Recently Konno considered the same problem as ours and
proved the convergence of eigenfunctions belonging to the continuous
spec.trum.

The author is indebted to Professor Hiroshi Fujita who suggested
this problem. The proof of Lemma 3 is due to Professor Reiji Konno
(cf. also Roze [4]).

2. Statement of results.
Throughout the present paper we always assume that q(x), a real
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valued function defined on R, satisfies the following conditions:
(C.1) q(x) is measurable and bounded except in some neighbourhoods
U, of a finite number of singular points p, in 9 and satisfies the
inequalities

q(x) < const.
ix_pl/._,

x e U and

(C.2) there exist constants R)0, a)0 and C0)0 such that

q(x)[ < Co if Ix[>R.

Let A be the operator in L(g) associated with the exterior
Dirichlet problem (1). More precisely A is defined as followsl)

-Au+qu, u D(A),( 3 )
D(A)=k(9)(9).

Let A, n= 1, 2, ., be the operator in L(R) defined as

Au= Au+ qu+nzu, u e D(A)( 4 )
(D(A)-,(R).

The ollowing properties of A and A are known:
(i) they are sel-adjoint; (ii) they are bounded below uniformly with
respect to n; (iii) the negative part of the spectrum of A is discrete,
namely, it consists of at most countable number o eigenvalues with
finite multiplicity and has no points o accumulation except or zero
(cf. Schechter [5]).

(C.1) was assumed to ensure property (ii). Thanks to property
(ii), (A+ t)- exists and is bounded or all n if t0 is sufficiently large.
Now we have the next preliminary theorem.

Theorem 1. (a) For every suciently large tO, the sequence
(A+ t)- converges strongly asn to a bounded sdf-ad]oint opera-
tor G in L(R)=L(K)L(9). G is reduced by the subspaces L(K)
and L(). The part of G in L(K) is equal to 0 and the part of G in
L(9) is equal to (A + t)-. (b) The negative part of the spectrum of A
is discrete.

Let us enumerate the negative eigenvalues of A and A as
( 5 ) .,
6 ) 12"" ",

where each eigenvalue is counted repeatedly according to its multi-
plicity. These series may terminate in finite terms or may even be
vacuous. Let s be the number which is equal to the total multiplicity
of eigenvalues of A. In other words, s=O if series (6) is vacuous,
s k if (6) terminates at the k-th term, and s= if (6) does not termi-
nate in finite terms. Then, our main result is expressed in the.follow-
ing theorem.

1) D(T) stands for the domain of an operator T.
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Theorem 2. Let s be defined as above. Then, for every ] <: s,
() tendseach eigenvalue () converges to as n-. For ]s, each ..

to zero asn or the series {)},,... terminates in finite terms.
The next lemma is essential in the proof.
Lemma . For every eO, there exists a constant r>O inde-

pendent of such that A=2,20 and I]]]=1 imply

dx< s
JxJr

Remark 4. Let .) be the eigenfunction of A corresponding to
]). As can be seen from the proof ofTheorem 2, a subsequence
converges strongly as n’ to an eigenfunction of A correspond-
ing to . About the convergence o eigenfunction we can actually
say more, namely, when ] is simple, we can choose the sequence

(n)( }n=,,... such that it converges strongly asn to , where is
extended to K by setting =0 there.. Proof of Theorems.

Proof of Theorem 1. Let t0.be sufficiently large. Then the
sequence ((An+ t)} is monotone decreasing in n and (J](A+ t)-]J} is
bounded in n. Consequently (A+ t)- converges strongly to a bounded
self-adjoint operator G in L(R) (cf. Kato [1]). Thus we have the first
statement of Theorem 1. Now, let u e L(R) be arbitrarily fixed.
Put (A+t)-u=f and Gu=g. Clearly fg as n strongly in
L(R). Let us express q as q q+ q_, q 0. Then using the uniform
boundedness of (A + t)- and assumption (C.1) and making t larger
necessary, we can prove that there exist M 0, e 0 and fl)0 satisfy-
ing 1--e0 and t-fl0 such that

(7)
+(t-fl)JJA]J+nJJzAJ, u L(R).

It ollows from (7) that zf]0 asn and that {f} is a bounded
sequence in (R). Therefore, since fg in L(R), we see that
fVg weakly in L(R). As f0 on K, g=0 on K. In other
words,) g e (). If u L(K) i.e. u J=0, then we can write u as

u=(A+t)f=z(A+t)f. From property (ii), there is y0 such
that
(S) JuJJlJZAJ((A+t)A,A)JJfJl, ueL(K).
Therefore f tends to zero as n. Thus we have that G is reduced
by L(K) and L(9). Next we show that if u e L(9) i.e. uJ=0, then

Gu[=(A+t)-u in L(9). In fact, or each

2) We sometimes use the same letter to denote a tunction in R and its
restriction to tO or to K. Furthermore, L(K) and L(tO) are frequently regarded
as subspaces of L:(R3)=L(K)(L(?2).
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(U, p)L(a)--((An + t)f
(Vf Tp)z(a + ((q -t- t)f,

Taking the limit, we have
(u, )L*() =(Vg, V)L,() + ((q + t)g,

Moreover, we have for each v e D(A)=k(9)(9)
( 9 ) (u, V)L,()=(Vg, VV)L() + ((q + t)g, V)L(), V D(A).
Furthermore we have

((A + t)-iu, (A + t)V)L()--(g, (A + t)V)L(), V e D(A).
Since the range of A+t is equal to L(9), we obtain g=(A+t)-u in
L(). Thus we have proved (a).

Next we show (b). Let E and E be the resolutions of identity
associated with A and A respectively and let I=[c, d] be an arbitrary
interval, where c ) d 0. By virtue of the minimax principle one
has 7) g)g.... Considering the strong convergence of resolvents
and the monotonicity of the sequence (A+ t)- in the sense of quadratic
forms, we have
(10) dim E(I) dim E(I) dim E(I) dim E(I).
From (10) we can easily see (b).

Proof of Theorem 2. Put dimE(I)--s0 in (10). Then it can be
seen rom (10) that for every ] <s0 the sequence ]() converges to some
number gd0 as n. Now we suppose in the proof that
is already orthonormalized. Hence, there exists a subsequence
which converges weakly to some element of L(R). According to
Lemma 3 and Rellich’s theorem, however, we can easily show that the
convergence is actually the strong convergence. In the same way as in
the proof of Theorem 1 (cf. (7) and (9)), we oStain =(A+ t)-i(j+
in L(9). Thus we have e D(A)=(9) (9) and A- in
L(9) Furthermore, since (’) converges strongly, (} is also ortho-
normalized. Thus we can see that each Z is actually equal to .
Therefore the original sequence {)}=1,,... converges asn to the
eigenvalue .

4. Proof of Lemma 3.

We show that there exist r>0 and C0, independent of 2, such
that or any v> rl

(11) ]dx

where 0-- a for 0 a 1 and 0 1 for 1g a. Since the proof in the
case 1 is essentially the same as in the case 0a 1, we shall only
deal with the case 0<a<l. Put) 9,-{a<]x]<b}, 9-{{x]>a} and

3) We can choose numbers {n’} in common with respect to all
4) We suppose that a is sufficiently large, and
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S={Ixl=a}. Denoting by ( ) the innerproduct in R, we get by
Green’s ormula

!(, x)ldS+ I(,xlxl"-)ldx
Sb 9ab

J

There exists r00 independent of 2 such that the ourth term on the
right side is not greater than C0 for any aro. We note that {} is
bounded in (R ) uniformly in 2 0 by the same estimate as in (7)
Let M be a constant such thatVM. The third term is majorized
by a]g]] ] and is bounded by aM. Also we have
(12) x xl.-9 gM.
It follows from (12)that there exists a sequence {b(k)}:,,... tending
to infinity ask such that

1(7 , xb(k),-) dSO

We proceed to the first term. By virtue of (12), there exists some a
such that r0 ag r0 + 1 and

a"-l[ (, x) dSg (to + )M.
JSa

From what was stated above, we see that there exists a constant M’0
independent of 2 such that

xl"(ll-l)dxM’.
xro+l

Hence follows the desired inequality (11).
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