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(Comm. by Kinjiré6 KUNUGI, M. J. A., Sept. 12, 1970)

1. Let i a, be an infinite series and let (s,) be the sequence of

n=0

its partial sums. Let (p,)=®,, 0, ---) be a sequence of positive
numbers and P,=p,+p,+:--+p, =0,1,2,...), p_,=P_,=0. We
write

t=P' 3 puisi=Pi S Poyay (1=1,2,-)

which is called the nth Norlund mean of the series J a, or the sequence
(sn). If the sequence (t,) is of bounded variation, then the series > a,
is called to be absolutely summable (N, p,) or summable |N, p,| and we
write > a, €|N, D,

Let f be an integrable function over the interval (0,27) and be
periodic with period 2zx. We denote its Fourier series by

f(t)~%ao+ 37 (@, cosnt+ b, sinnt) =37 A, (2.
n=1 n=0

The sequence (m,) is called the absolute Noérlund summability factor
or the |N, p,| summability factor of the Fourier series of f at the point
x if > m,A,.(x) € |N, p,|.

We suppose always that all m, are non-negative.

S. V. Kolhekar [1] has proved the

Theorem A. Let (m,) be a monotone decreasing sequence
satisfying the condition

(1) fj mn"'log n<oo
n=1
and let (p,) be a monotone increasing sequence such that
(2) Dn/Pr=0Q1/n),  A(P,/p,) = O@1)  asn—oco.
Then, if
(3) (_Ii(t)zrlgo(u)] du=0(t)  as t—0
0

where o) =@, (w)=f@+w) + f@—u) —2f(x), then > m,A,(x)
e|N, pal.

We define a function m(t) continuous on the interval (1, co) such
that m(n)=m, for n=1,2, . .. and m(¢) is linear for every non-integral
t. tSimilarly p(t) is defined by the sequence (p,) and we put P(%)

=Lp(u)du.
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L. Leindler [2] has proved the following
Theorem B. Let (m,) and (p,) be monotone decreasing sequences.

If
72‘1 m,P;*<<oo and O()=0 (m(%) / P(%)) as t—0
or

i m,P;tloglogn<oo and &{)=0 (t/log %) as t—0,
n=1

then >, m,A,.(x) € |N, D,
2. We have the following generalizations.
Theorem 1. Let (m,) be a monotone decreasing sequence satis-

fying the condition (1) and let (p,) be a monotone increasing sequence
such that

(1) 5 Pres=Puogo <A o g2,
n=j+1 P”._1 ]
If the condition (3) is satisfied, then >, m, A (x) €|N, py,|.
The condition (2) implies the condition (4) and then Theorem 1 is
a generalization of Theorem A.

Theorem 2. Let (m,) and (p,) be monotone decreasing sequences
satisfying the condition

i} m,P;tlog n<co.
n=1

If the condition (8) is satisfied, then > m,A,.(x) € |N, D).
3. We can generalize Theorem 1 in the following form.
Theorem 3. Let (m,) be a monotone decreasing sequence and (p,)
be a monotone increasing sequence satisfying the condition (4). If

" o) ( )log ATt < oo
o 12

90 g [ MU g,

then > m,A,(x) e |N,p,|
This theorem has the following corollaries.
Corollary 1. Suppose that (m,) is a monotone decreasing

sequence and that (p,) is o monotone increasing sequence salisfying
the condition (4). If

D<At / (log _1_) “ s t—0

and

for an a, 0 <1, and
> malogm'™t oy oy 5 MaloElogn
n=2 n n=3 n
according as 0<a <1 or a=1, then >, m,A.(x) €|N, p,|
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Corollary 2. Suppose that (m,) is a monotone decreasing
sequence and that (p,) is & monotone increasing sequence satisfying
the condition (4). If

(5) j"@(t)t—Zde and 3] (/1)< oo,
0 n=1
then >, m,A.(x) €|N, Dyl
The first condition of (5) is satisfied when @(t) < At / (log %) a(a >1)

as t—0 or O(H <A t m(1/t) as t—0.
Theorem B is generalized as follows:
Theorem 4. Suppose that (m,) and (p,) are monotone decreasing

sequences. If
00 gy [ MU gy,
o 0 v2P(1/v)
then 3 m,A,(x) € |N, D,
As a corollary of Theorem 4, we get
Corollary 3. Suppose that (m,) and (p,) are monotone decreasing
sequences. If

@(t)éAt/ (log%)a as t—0 and i‘, m,P; (log n)'-*< oo
n=1

for 0<a<1 orif
j "d)tdt<oco and 3 muPii< oo,
0 n=1

then > myA,(x) € |N, Dy,
3. We shall consider the case that ¢ is of bounded variation. In
this direction we know the following theorem due to R. Mohanty [3]:
Theorem C. If

rt‘“ldso(t)Koo for an a,0<a<1,
0

then > n*A,(x) €|C, B| for every B>a.

We generalize this theorem in the following form.

Theorem 5. Suppose that (p,) and (m,) are sequences satisfying
the following conditions: (1) p,| as n—oo, (i) m, T and m,/n|
as n—co, and (i) 3 TE<An pf rm(l/t) |do(t)|< oo, then

i=n kP, P, 0
> imuA(x) € |N, D,

We shall prove here only this theorem and the others will be
proved in another paper.

4. Proof of Theorem 5. We can suppose that A,(x)=0. By the
definition

Am=1 j " o) cos jt dt=— L f " sin jt de(t)
T Jo Jjm Jo
and then
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1 n
tn_tn-lz PnPn_l jZ=1 (Pnpn—j—Pn—Jpn)mjAj(x)’
i [ta—ta i < Jw |d¢(t)|(i: f: Pnpn—J_Pn-jpn 'm:f sin ﬂ') .
n=1 0 n=1|j=1 PnPn-—l 7

It is sufficient to prove that the integrand is less than A m(1/n) on
(0, 7). Putting s=[1/¢],

- Pnpn—j_'Pn-jpn mj 3 > ‘_ £ - — V
jZJl P T_smyt _nZ=1+ > =U+V.

Since P,_,;/P, 1 1 as n—oo for each j,
Uéti i mj Pnpn—j_Pn—jpn —_‘ti mj i: ( Pn_j _ Pn—j—l)
=1j=1

n=1

n PnPn—l j=1 =5\ P, P,
—t> m, L=t <Am,
7= P,
Now
— S C Pnpn—j_Pn—jpn mj 3 . & : < 2
V= 2, —lsingt)< > ||+ 2| 2]
n=s+l | j=1 PnPn—l K n=s+1 | j=1 n=s+1 | j=s+1
—W+X
where
& S P P s P
w<t m ( noy — ""“):t m (1 S-f)<A m,
= mUe L TR
and
2(s+1)-1| [n/2] oo n/2 o
= + > + >
n=s+1 | j=s+1 n=2(s+1) | j=8+1 n=2(8+1) | j=[n/2]+1
=X'+Y+2Z.

X'< A m, similarly as above. Writing [n/2]=N,

Ppn_y—Pu_pn m; cos (j—1/2)t-cos (j+1/2)t
j=s+1 P,P,_, 7 2sin t/2
Popny—Pn_yDn My cos (N+1/2)¢

PnPn_l N 2 sin t/2
”Z‘l A(ﬁ Ppy_j—Pn_iPa ) cos (+1/2)t

J P,P,_, 2 sin t/2
+ ‘ Pnpn—s—l_Pn—s-lpn Mg, COS (8+1/2)t D
PP, s+1 2gint/2

oo

Y= 3

n=2(s+1)

j=s+1
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and similarly Y,<A m, Finally we shall estimate Z using the
following lemma due to E. Hille and J. D. Tamarkin [4]:
Lemma. If the sequence q, is positive and non-increasing, then

5 qsinjt| SAQU/Y and At

=1

for any n and t e (0, x), where Q(r)=> q; for r>1.
j<r

Then we get
7 =

n=2(s+1)

= 1 r,omy

Pn—l j=N+1 ]

Da

nPn—l J=N+1

<AP, > Men +é Mn Pr < A 1,
n=tG+o N P,_; t a=tG+n NP,

Thus we have proved the theorem.

Dy_y Sin jt — ﬂ,’-Pn_, sin jt
]
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