216. Neutron Transport Process on Bounded Homogeneous Domain

By Takakazu Mori
Department of Mathematics, Kyoto Sangyo University
(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1970)

1. The neutron transport process has been studied by Harris ([1]) and Mullikin ([5]) as an application of the theory of discrete-time branching processes. The main problems are the asymptotic behavior of the number of neutrons, the extinction probability and the rate of convergence of the extinction probability at time t to the extinction probability. In this paper we consider similar problems for a monoenergetic and isotropic neutron transport process on a bounded homogeneous domain. We will formulate the model as a continuous-time branching process and apply the general theory of such processes ([2]). Main results are the theorems $1 \sim 5$ below. It will be seen that the expected number of new-born neutrons plays an essential role in the above problems. This is a typical property of branching processes, which is well known for Galton-Watson processes.
2. Let D be a bounded closed convex domain in the three-dimensional Euclidian space \boldsymbol{R}^{3} with a smooth boundary and Ω be the unit sphere in \boldsymbol{R}^{3}. We denote by G the product space $D \times \Omega$ and ∂G the set (x, ω) where x belongs to the boundary of D and ω is a direction exiting the domain; i.e., $\left(\omega, n_{x}\right) \geqq 0$ where n_{x} is the direction of the outernormal at x. We formulate our model of neutron transport process as a continuous-time branching process as follows; a particle at $x \in D$ starting with unit speed in the direction $\omega^{*)}$ will, at a random time T which is exponentially distributed with mean σ^{-1}, be absorbed, scattered, or multiplied by fission. If it leaves the domain D before T, then it is absorbed. The direction of new particles is supposed to be isotropically distributed. Each of new particles, independently each other, performs a similar motion as the original one. We can construct such a branching process on a suitable probability space ([2]) and every probabilistic argument below is based on this process.

Let $F[\xi]=\sum_{n=0}^{\infty} p_{n} \xi^{n}$ where p_{n} is the probability that n neutrons are produced when fission occurs. (In particular p_{0} is the probability of absorption and p_{1} the probability of scattering.) We will assume $F^{\prime}[1]<\infty$ and $p_{0}+p_{1}<1$. The first assumption guarantees that the

[^0]explosion does not occur in finite time. By the general theory, the extinction probability $q(t, x, \omega)$ at time t starting at (x, ω) is the unique solution of

(1) $\left\{\begin{array}{l}\frac{\partial u(t, x, \omega)}{\partial t}=\omega \cdot \nabla u(t, x, \omega)-\sigma u(t, x, \omega)+\sigma F[\tilde{u}(t, x)](\equiv A u(t, x, \omega)) \\ u(t, x, \omega)=1,(x, \omega) \in \partial G \\ u(0+, x, \omega)=0 .\end{array}\right.$

Here, " \sim " means the direction average; $\widetilde{u}(t, x)=\frac{1}{4 \pi} \int_{\Omega} u(t, x, \omega) d \omega$.
The extinction probability $q(x, \omega)$ starting at (x, ω), which is given as $\lim _{t \rightarrow \infty} q(t, x, \omega)$, is the smallest solution of
(2) $A u=0$ in $G, u(x, \omega)=1$ if $(x, \omega) \in \partial G, 0 \leqq u(x, \omega) \leqq 1$.

This equation has a trivial solution $u(x, \omega) \equiv 1$. Let $E(x, y ; \lambda)$ be the function $\sigma e^{-(\sigma+\lambda)|x-y|} / 4 \pi|x-y|^{2}$ on $D \times D$ for each complex λ, and c^{*-1} be the largest positive eigenvalue of the operator induced by the kernel $E(x, y ; 0)$ on the Banach space $C(D)$ of all continuous functions on D with sup-norm.

Lemma 1 (Pazy-Rabinowitz [6]). If $F^{\prime}[1] \leqq c^{*}$, then (2) has no non-trivial solution and hence $q(x, \omega) \equiv 1$. If $F^{\prime}[1]>c^{*}$, it has the unique non-trivial solution which is, therefore, equal to $q(x, \omega)$. Furthermore, $q(x, \omega)<1$, if $(x, \omega) \in G-\partial G$, and $\inf _{(x, \omega) \in G} q(x, \omega)>0$.
3. In this section we shall consider the following equation.
(3) $\left\{\begin{array}{l}\frac{\partial u(t, x, \omega)}{\partial t}=\omega \cdot \nabla u(t, x, \omega)-\sigma u(t, x, \omega)+k(x) \widetilde{u}(t, x)(\equiv B u(t, x, \omega)) \\ u(t, x, \omega)=0 \text { if }(x, \omega) \in \partial G \\ u(0+, x, \omega)=f(x, \omega)\end{array}\right.$
where $k(x)$ is continuous on D, bounded, and bounded away from 0 by a positive constant. Let $C_{0}(G)$ be the Banach space of all continuous functions on G which vanish on ∂G with sup-norm $\|\cdot\|$, and $\boldsymbol{H}(G)(\boldsymbol{H}(D))$ be the Hilbert space of all spuare integrable functions with L^{2}-norm $\|\cdot\|_{2}$ on $G(\operatorname{resp} . D)$. First we shall consider the following eigenvalue problem in the space $\boldsymbol{C}_{0}(G)$ or $\boldsymbol{H}(G)$.
(4) $\quad B \psi=\lambda \psi, \quad \psi(x, \omega)=0$ if $(x, \omega) \in \partial G$.

If ψ is the solution of (4), then $\varphi(x)=\widetilde{\psi}(x)$ satisfies

$$
\begin{equation*}
\varphi(x)=\int_{D} E(x, y ; \lambda) \varphi(y) k(y) d y(\equiv E(\lambda) \varphi(x)) \tag{5}
\end{equation*}
$$

Conversely, if $\varphi \in \boldsymbol{C}(D)$ is the solution of (5), then there exists a unique solution ψ of (4) such that $\varphi=\widetilde{\psi}$. S. Ukai has proved that there exist infinitely many real eigenvalues of B, the largest one is simple, and the corresponding eigenfunction is everywhere positive ([7]).

Lemma 2. Let λ_{0} be the real eigenvalue of B with maximal real part. Then there exist no eigenvalues of the form $\lambda_{0}+i c, c \neq 0$.

Proof. Suppose that $\lambda=\lambda_{0}+i c$ is a eigenvalue of B with corresponding eigenfunction $\psi_{c}(x, \omega)$. Since $\varphi_{c}=\tilde{\psi}_{c}$ satisfies $\varphi_{c}=E(\lambda) \varphi_{c}$, we have $\left|\varphi_{c}\right|(x) \leqq E\left(\lambda_{0}\right)\left|\varphi_{c}\right|(x)$.
Assume $\left|\varphi_{c}\right|(x) \not \equiv E\left(\lambda_{0}\right)\left|\varphi_{c}\right|(x)$, then

$$
\left(\left|\varphi_{c}\right|, \varphi\right)<\left(E\left(\lambda_{0}\right)\left|\varphi_{c}\right|, \varphi\right)=\left(\left|\varphi_{c}\right|, E\left(\lambda_{0}\right) * \varphi\right)=\left(\left|\varphi_{c}\right|, \varphi\right)
$$

Therefore $\left|\varphi_{c}\right| \equiv E\left(\lambda_{0}\right)\left|\varphi_{c}\right|$.
By virtue of the simplicity of φ_{c},

$$
\varphi_{c}(x)=\varphi(x) e^{i f(x)} \text { and } f \text { is a continuous function on } D .
$$

From the definition

$$
\varphi(x)=\int_{D} E\left(x, y ; \lambda_{0}\right) \varphi(y) \exp \{i\{f(y)-f(x)-c|x-y|\}\} k(y) d y
$$

and observing that φ is real, we have

$$
\varphi(x)=\int_{D} E\left(x, y ; \lambda_{0}\right) \varphi(y) \cos \{f(y)-f(x)-c|x-y|\} k(y) d y
$$

By the definition of φ, we must have $\cos \{f(y)-f(x)-c|x-y|\}=1$. Since f is continuous, $f(y)-f(x)-c|x-y|=0$, but this is a contradiction if $c \neq 0$, and lemma is proved.

The largest eigenvalue $\mu(\beta)$ of $E(\beta)$ as a function of real β is continuous, and strictly decreasing for $\beta>-\sigma$, as shown by S. Ukai ([7]). The strict decreasing property of $\mu(\beta)$ for real β can be proved easily by using the next lemma.

Lemma 3 (Karlin [4]). Suppose that E is completely continuous and strictly positive operator over a Banach space, then the largest eigenvalue r of E is given by

$$
r=\sup \left\{\left.\lambda\right|^{\boxminus} x \neq 0, x \geqq 0, E x \geqq \lambda x\right\}=\inf \left\{\lambda \mid{ }^{\exists} x \neq 0, x \geqq 0, E x \leqq \lambda x\right\} .
$$

Lemma 4. $\mu(B)$ is strictly decreasing.
Proof. Let φ_{β} be the eigenfunction corresponding to $\mu(\beta)$. Since φ_{β} is everywhere positive on D, φ_{β} is bounded away from 0 by a positive constant, i.e. φ_{β} is a strictly positive element. We may assume that $\left\|\varphi_{\beta}\right\|=1$. Then for every positive ε, there exists a positive constant $\eta>0$ such that $\{E(\beta-\varepsilon)-E(\beta)\} \varphi_{\beta} \geqq \eta \cdot$ Hence $E(\beta-\varepsilon) \varphi_{\beta} \geqq E(\beta) \varphi_{\beta}+\eta$ $\geqq(\mu(\beta)+\eta) \varphi_{\beta}$, therefore $\mu(\beta-\varepsilon) \geqq \mu(\beta)+\eta>\mu(\beta)$ by Lemma 3.

Keeping the Jörgens' results ([3]) in mind, we can obtain the following

Lemma 5. There exists a one-parameter semigroup M_{t} on $C_{0}(G)$ or on $\boldsymbol{H}(G)$, such that $u(t, x, \omega)=M_{t} f(x, \omega)$ satisfies (3). Moreover there exist positive constants T_{0} and ρ such that for every $t \geqq T_{0}$, and for every $f \in \boldsymbol{C}_{0}(G)$

$$
\left\|M_{t} f(x, \omega)-e^{\lambda_{0} t}\left(f, \psi^{*}\right) \psi(x, \omega)\right\| \leqq e^{\lambda_{0} t} 0\left(e^{-\rho t}\|f\|\right)
$$

where λ_{0} is the eigenvalue of B with maximal real part, and $\psi\left(\psi^{*}\right)$ is the corresponding eigenfunction of B (resp. B^{*}). When f is in $\boldsymbol{H}(G)$, the same estimate holds if we replace only $\|f\|$ in the right-hand side by $\|f\|_{2}$.

If $k(x) \equiv \sigma F^{\prime}[1]$ the solution $u(t, x, \omega)$ of equation (3) represents the expected number of neutrons at time t starting at (x, ω). Let α be the eigenvalue of B with maximal real part in this case. Then from strict decreasing property of $\mu(\beta)$, we have

Lemma 6. $\alpha<0, \alpha=0$, or $\alpha>0$ according as $F^{\prime}[1]<c^{*}, F^{\prime}[1]=c^{*}$, or $F^{\prime}[1]>c^{*}$, respectively.
4. We shall study the asymptotic behavior of $r(t, x, \omega)=q(x, \omega)$ $-q(t, x, \omega)$. Let α be as above, and $\psi(x, \omega)\left(\psi^{*}(x, \omega)\right)$ be the corresponding eigenfunction of B (resp. B^{*}).

Theorem 1. Suppose $F^{\prime}[1]<c^{*}$, and $F^{\prime \prime}[1]<\infty$, then there exist positive constants C_{1} and δ such that

$$
r(t, x, \omega)=C_{1} e^{\alpha t} \psi(x, \omega)+e^{\alpha t} 0\left(e^{-\delta t}\right), t \rightarrow \infty .
$$

Theorem 2. Suppose $F^{\prime}[1]=c^{*}$, and $F^{\prime \prime \prime}[1]<\infty$, then there exists a positive constant C_{2} such that

$$
r(t, x, \omega)=C_{2} \psi(x, \omega) / t+0(1 / t), t \rightarrow \infty
$$

Theorem 3. Suppose $F^{\prime}[1]>c^{*}$, and $F^{\prime \prime}[1]<\infty$, then $q(x, \omega) \neq 1$ and there exist positive constants C_{3} and ε such that

$$
r(t, x, \omega)=C_{3} e^{\tau t} \bar{\psi}(x, \omega)+e^{\tau t} 0\left(e^{-s t}\right), t \rightarrow \infty
$$

where γ is the eigenvalue of B in the case $k(x) \equiv \sigma F^{\prime}[\widetilde{q}(x)]$, and $\bar{\psi}(x, \omega)$ is the corresponding eigenfunction. In this case, $\mu(0)<1$, and $\gamma<0$ from the strict increasing property of $\mu(\beta)$.

Let Z_{t}^{E} be the number of particles in $E \subset G$ at time t starting at (x, ω).

Theorem 4. Suppose $F^{\prime}[1]>c^{*}$, and $F^{\prime \prime}[1]<\infty$. Then there exists a non-negative random variable W such that

$$
\{W>0\}=\left\{Z_{t}^{G} \rightarrow \infty \text { as } t \rightarrow \infty\right\} \quad \text { a.s., }
$$

and for every $E \subset G$ such that $\left(I_{E}, 1\right)^{*)}>0$,

$$
\boldsymbol{E}\left[\left|Z_{t}^{E}\left\{e^{\alpha t}\left(I_{E}, \psi^{*}\right)\right\}^{-1}-W\right|^{2}\right]=0\left(e^{-s t}\right)
$$

where ε is independent of E.
Theorem 5. Suppose $F^{\prime}[1]=c^{*}$, and $F^{\prime \prime}[1]<\infty$. Then for every $E_{1}, E_{2}, \cdots, E_{n} \subset G$ such that $\left(I_{E_{i}}, 1\right)>0(i=1,2, \cdots, n)$, the joint distribution of $\left\{t 2^{-1} \sigma F^{\prime \prime}[1]\left(\psi^{2}, \psi^{*}\right)\right\}^{-1}\left(Z_{t}^{E_{1}}, Z_{t}^{E_{2}}, \cdots, Z_{t}^{E_{n}}\right)$ under the condition $Z_{t}^{G} \neq 0$, converges to that of $\left(\left(I_{E_{1}}, \psi^{*}\right),\left(I_{E_{2}}, \psi^{*}\right), \cdots,\left(I_{E_{n}}, \psi^{*}\right)\right) \cdot W$, when $t \rightarrow \infty$, where W is exponentially distributed with mean 1.

References

[1] T. E. Harris: Theory of Branching Processes. Springer (1963).
[2] N. Ikeda, M. Nagasawa, and S. Watanabe: Branching Markov Processes. I-III. Jour. Math. Kyoto Univ., 8, 233-277, 365-410 (1968); 9, 97-162 (1969).
[3] K. Jörgens: An asymptotic expansion in the theory of neutron transport. Comm. Pure Appl. Math., 11, 907-937 (1958).

[^1][4] S. Karlin: Positive operators. Jour. Math. Mech., 8, 579-611 (1959).
[5] T. W. Mullikin: Neutron Branching Processes. Probabilistic Methods in Applied Mathematics, Vol.1. Academic Press (1968).
[6] A. Pazy and P. H. Rabinowitz: A nonlinear integral equation with applications to neutron transport theory. Archive Rat. Math. Mech., 32, 226246 (1969).
[7] S. Ukai: Real eigenvalues of the monoenergetic transport operator for a homogeneous medium. Jour. Nucl. Sci. Technol., 3, 263-266 (1966).
[8] S. Watanabe: On the branching process for Brownian particles with an absorbing boundary. Jour. Math. Kyoto Univ., 4, 385-398 (1965).

[^0]: *) This statement will be simplified below as "starting at (x, ω)."

[^1]: *) I_{E} is the indicator function of the set E.

