207. On Dirichlet Series whose Coefficients are Class Numbers of Integral Binary Cubic Forms

By Takuro Shintani

(Comm. by Kunihiko KODAIRA, M. J. A., Nov. 12, 1970)

1. In this note we give a concrete example of "zeta functions associated with prehomogeneous vector spaces" introduced by Professor M. Sato.

2. We denote by V the vector space of real binary cubic forms. For every $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$, we define $F_x \in V$ as follows:

$$F_x(u, v) = x_1u^3 + x_2u^2v + x_3uv^2 + x_4v^3.$$

In the following, we identify V with \mathbf{R}^4 by the linear isomorphism: $x \rightarrow F_x$. V becomes a $GL(2, \mathbf{R})$ -module if we put

$$g \cdot F_x((u, v)) = F_x((u, v)g) = F_{g \cdot x}((u, v))$$

(g \epsilon GL(2, **R**)).

For every $x \in V$, we denote by P(x) the discriminant of F_x . We have $P(x) = x_2^2 x_3^2 + 18x_1 x_2 x_3 x_4 - 4x_1 x_3^3 - 4x_2^3 x_4 - 27x_1^2 x_4^2$

and

$$P(g \cdot x) = (\det g)^{\epsilon} P(x) \qquad (g \in GL(2, \mathbb{R})).$$

In the following, we put

$$\chi(g)\!=\!(\det g)^6 \qquad (g\in GL(2,{ extbf{R}})).$$

For every $x, y \in V$, we put

$$\langle x, y \rangle = x_4 y_1 - \frac{1}{3} x_3 y_2 + \frac{1}{3} x_2 y_3 - x_1 y_4.$$

We denote by S(V) the space of rapidly decreasing functions on V and define the Fourier transform \hat{f} of $f \in S(V)$ as follows:

$$\hat{f}(x) = \int_{V} e^{2\pi i \langle x, y \rangle} f(y) dy.$$

3. We denote by L the lattice of integral binary cubic forms. We have

$$L = \{F_x; x \in Z^4\}.$$

Then L is invariant under the action of the $SL(2, \mathbb{Z})$. Two elements x, y of L are said to be equivalent if there exists a $\gamma \in SL(2, \mathbb{Z})$ such that $x = \gamma \cdot y$.

For every integer $m \neq 0$, we denote by L_m the set of integral binary cubic forms whose discriminants are m. It is known that there exist only finite number of equivalence classes in L_m . We denote by h(m) the number of equivalence classes in L_m . Let

$$x_1, \cdots, x_{h(m)}$$

be the representatives of equivalence classes in L_m . When m < 0,

T. SHINTANI

[Vol. 46,

it is known that the isotropy subgroup of each x_i in $SL(2, \mathbb{Z})$ is $\{1\}$ $(1 \leq i \leq h(m))$. When m > 0, the isotropy subgroup of each x_i in $SL(2, \mathbb{Z})$ is either $\{1\}$ or a cyclic group of order 3. In the first case we call x_i belongs to the class of the first kind. In the second case we call x_i belongs to the class of the second kind.

We denote by $h_1(m)$, $h_2(m)$ the numbers of classes of the first and the second kind respectively. We put

 $\hat{L} = \{F(u, v) = x_1u^3 + x_2u^2v + x_3uv^2 + x_4v^3 \in L; x_2, x_3 \in 3\mathbf{Z}\}.$ Then \hat{L} is an $SL(2, \mathbf{Z})$ -submodule of L. We denote by $\hat{h}(m)$ the number of equivalence classes in L_m which are contained in \hat{L} . We define $\hat{h}_1(m), \hat{h}_2(m)$ (m > 0) in a similar fashion. Now we define four Dirichlet series as follows:

$$egin{aligned} &\xi_1(L,s) = \sum\limits_{n=1}^\infty rac{h_1(n) + rac{1}{3}h_2(n)}{n^s}\,, \ &\xi_2(L,s) = \sum\limits_{n=1}^\infty rac{h(-n)}{n^s}\,, \ &\xi_1(\hat{L},s) = \sum\limits_{n=1}^\infty rac{\hat{h}_1(n) + rac{1}{3}\hat{h}_2(n)}{n^s}\,, \ &\xi_2(\hat{L},s) = \sum\limits_{n=1}^\infty rac{\hat{h}(-n)}{n^s}\,. \end{aligned}$$

4. We define a Haar measure dg on $GL(2, \mathbf{R})$ as follows:

$$dg = |\det g|^{-2} dp dq dr ds \qquad \left(g = \begin{pmatrix} p & q \\ r & s \end{pmatrix}\right).$$

We put

$$egin{aligned} G_+ = & \{g \in GL(2, \, {\it R}) \ ; \ \det g > 0 \}, \ & \Gamma = SL(2, \, {\it Z}), \ & L' = & \{x \in L \ ; \ P(x)
eq 0 \} \end{aligned}$$

and

 $\hat{L}' \!=\! \hat{L} \cap L'.$

For every $f \in \mathcal{S}(V)$, we put

$$Z(f,L;s) = \int_{G_+/\Gamma} \chi(g)^s \sum_{x \in L'} f(g \cdot x) dg$$

and

Further we put

$$\Phi_1(f,s) = \int_{P(x)>0} |P(x)|^s f(x) dx$$

and put

$$\Phi_2(f,s) = \int_{P(x)<0} |P(x)|^s f(x) dx.$$

Then we have the following:

Proposition 1. (i) When Re(s) is sufficiently large, we have

910

A Sort of Zeta-Function

$$Z(f, L; s) = \xi_1(L, s) \Phi_1(f, s-1) + \frac{1}{3} \xi_2(L, s) \Phi_2(f, s-1)$$

and

$$Z(f, \hat{L}, s) = \xi_1(\hat{L}, s) \Phi_1(f, s-1) + \frac{1}{3} \xi_2(\hat{L}, s) \Phi_2(f, s-1).$$

(ii) Z(f, L, s) and $Z(f, \hat{L}, s)$ can be continued analytically as meromorphic functions of s in the whole plane and satisfy the following functional equation.

$$Z(f, L, s) = Z(\hat{f}, \hat{L}, 1-s).$$

Proposition 2. $\Phi_1(f,s)$ and $\Phi_2(f,s)$ are meromorphic functions of s in the whole plane and satisfy the following functional equation:

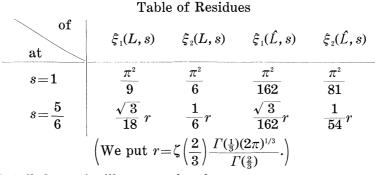
$$egin{aligned} &\langle \varPhi_1(f,s-1)\ \langle \varPhi_2(\widehat{f},s-1) \end{pmatrix} = \Gamma \Big(s - rac{1}{6} \Big) \Gamma(s)^2 \Gamma \left(s + rac{1}{6} \Big) rac{\pi^{-4s} \ 3^{6s}}{18} & \cdot \Big(rac{\sin 2\pi s}{3 \sin \pi s} rac{\sin \pi s}{\sin 2\pi s} \Big) \Big(rac{\varPhi_1(f,-s)}{\varPhi_2(f,-s)} \Big). \end{aligned}$$

Using these two propositions we can prove the following theorem.

Theorem. (i) Four Dirichlet series defined above converge absolutely when Re s>1 and can be continued analytically as meromorphic functions in the whole plane which have simple poles at s=1and s=5/6. They satisfy the following functional equation

$$egin{aligned} &\Gamma(arsigma,arlambda,1-s)\ +\Gamma\left(s-rac{1}{6}
ight)\Gamma(s)^2\Gamma\left(s+rac{1}{6}
ight)rac{\pi^{-4s}\,3^{6s}}{18}\ &\cdot\left(egin{smallmatrix}\sin2\pi s&\sin\pi s\ 3\sin\pi s&\sin2\pi s
ight)\left(egin{smallmatrix}arsigma_1(\hat{L},s)\ arsigma_2(\hat{L},s)
ight) \end{aligned}$$

(ii) Residues of them at s=1 and at s=5/6 are given in the following table.



Detailed proof will appear elsewhere.

Reference

Mikio Sato: Theory of prehomogeneous vector spaces. Sûgaku no Ayumi, 15-1, pp. 85-157 (in Japanese).

No. 9]