14. A Simple Geometric Construction of Weakly Mixing Flows which are not Strongly Mixing

By Eijun Kin
Tokyo Metropolitan University
(Comm. by Kinjirô Kunugı, m. J. A., Jan. 12, 1971)

1. The existence of measure preserving transformations which are weakly but not strongly mixing has been discussed by Halmos [4], Kakutani-von Neumann [5] and Chacon [1], [2], [3]. Maruyama [6] has shown the existence of Gaussian flows of this type by some results in Gaussian processes. In this short paper we shall give a general method for constructing flows of the type, of which idea is obtained from Chacon [2], [3].
2. Let $(\Omega, \mathcal{L}, \mu)$ be a Lebesgue space, where $\Omega=[0,1) \times[0,1), \mathcal{L}$ is the product Lebesgue class and μ is the usual product Lebesgue measure defined on \mathcal{L}.

Definition 1. A flow $\left\{T_{t}\right\}$ on $(\Omega, \mathcal{L}, \mu)$ is said to be ergodic if there exists a positive number t such that $\mu\left(T_{t} A \cap B\right)>0$ holds for every pair A, B from \mathcal{L} with positive measure.

Definition 2. If there exist a complex number λ with the absolute value one and a function f in $\mathrm{L}^{2}(\Omega)$ such that
$f\left(T_{t}(x, y)\right)=\lambda^{t} f(x, y) \quad$ for a.a. $(x, y) \in \Omega$ and all t,
we call λ and f an eigenvalue and an eigenfunction corresponding to λ, respectively.

Definition 3. A flow $\left\{T_{t}\right\}$ is weakly mixing if the flow cannot have simple eigenvalues other than one.

Definition 4. A flow $\left\{T_{t}\right\}$ is strongly mixing if

$$
\lim _{t \rightarrow \infty} \mu\left(T_{t} A \cap B\right)=\mu(A) \mu(B)
$$

holds for every pair A, B from \mathcal{L} with positive measure.
Definition 5. For a set A of \mathcal{L} with positive measure, a local flow φ_{t} on A is defined as follows:

$$
\varphi_{t}(x, y)= \begin{cases}(x, y+t) & \text { if }(x, y+t) \in A, \\ \text { undefined elsewhere }\end{cases}
$$

for each $(x, y) \in A$.
Our main result may be stated as follows:
Theorem. There exists a weakly mixing flow $\left\{T_{t}\right\}$ on (Ω, \mathcal{L}, u) which is not strongly mixing.

Proof. After the flow is constructed, we will prove that it is weakly but not strongly mixing using a direct argument. The first step
of the construction is the following. We divide the two dimensional torus Ω into three pairwise disjoint and consecutive rectangles represented by R_{11}, R_{12} and Q_{1}, where $R_{11}=[0,1 / 3) \times[0,1), R_{12}=[1 / 3,2 / 3)$ $\times[0,1)$ and $Q_{1}=[2 / 3,1) \times[0,1)$. Put R_{12} on R_{11} identifying the points $(0,1)$ and $(1 / 3,1)$ with the points $(1 / 3,0)$ and $(2 / 3,0)$, respectively. We define the local flow $\varphi_{t}^{(1)}$ on the set R_{1}, where $R_{1}=[0,1 / 3) \times[0,2)$. For later convenience' sake, we divide R_{1} into some squares, $A_{11}=[0,1 / 3)$ $\times[0,1 / 3), \cdots, A_{16}=[0,1 / 3) \times[5 / 3,2)$ and denote by \mathfrak{R}_{1} the family $\left\{A_{11}\right.$, $\left.\cdots, A_{18}, Q_{1}\right\}$. Take

$$
p(1)=2 \quad \text { and } \quad \sigma(1)=6 .
$$

Next, we suppose that the n-1th step has been already constructed. In an analogous method to the above, we divide R_{n-1} and Q_{n-1} into two pairwise disjoint and consecutive rectangles $R_{n 1}, R_{n 2}: Q_{n 1}, Q_{n 2}$, respectively. Put $R_{n 2}$ on $R_{n 1}$ and $Q_{n 1}$ on $R_{n 2}$, and denote by R_{n} the set, that is, $R_{n}=\left[0,1 / 3(1 / 2)^{n-1}\right) \times[0, p(n))$, and take $Q_{n}=Q_{n 2}$. We define the local flow $\varphi_{t}^{(n)}$ on the set R_{n}. Furthermore, divide R_{n} into some pairwise disjoint and consecutive squares, $A_{n 1}, \cdots, A_{n \circ(n)}$ and put $\mathfrak{A}_{n}=\left\{A_{n 1}, \cdots\right.$, $\left.A_{n_{\sigma}(n)}, Q_{n}\right\}$. Here, the squares $A_{n k}, 1 \leqq k \leqq \sigma(n)$, have the same area. A simple calculation shows that for $n \geqq 2$,

$$
p(n)=2 \cdot p(n-1)+1 \quad \text { and } \quad \sigma(n)=4 \cdot \sigma(n-1)+2^{n-2} \cdot 6
$$

It is clear from the geometric interpretation that $\varphi_{t}^{(n+1)}=\varphi_{t}^{(n)}$ on the domain of the definition of $\varphi_{t}^{(n)}$, and that $\lim _{n} \varphi_{t}^{(n)}$ exists almost everywhere. Indeed, this limit, $\lim _{n} \varphi_{t}^{(n)}$, is the common extension of $\varphi_{t}^{(n)}$ for all n. Let

$$
T_{t}=\lim _{n \rightarrow \infty} \varphi_{t}^{(n)}
$$

Obviously, the flow $\left\{T_{t}\right\}$ is ergodic. Noticing that $\mu\left(\varphi_{n}^{(n)} R_{11} \cap R_{11}\right)$ $=1 / 3(1 / 2)^{n-1}$ holds for all $n \geqq 2$, and putting $T=T_{1}$, it is easily verified that

$$
\lim _{n \rightarrow \infty} \mu\left(T^{n} R_{11} \cap R_{11}\right) \neq\left\{\mu\left(R_{11}\right)\right\}^{2}=\frac{1}{9}
$$

This shows that the flow $\left\{T_{t}\right\}$ is not strongly mixing.
In what follows we prepare the following lemmas which are essential for our purpose.

Lemma 1. For any positive number ε and for any Borel set B with positive measure, there exist an integer n and a subset α of (1,2, $\cdots, \sigma(n))$ such that

$$
\mu\left(B \ominus \bigcup_{k \in \alpha} A_{n k}\right)<\varepsilon \quad \text { and } \quad \mu\left(B \cap A_{n k}\right) \geqq(1-\varepsilon) \mu\left(A_{n k}\right)
$$

for $k \in \alpha$, where $\mathfrak{n}_{n}=\left\{A_{n 1}, \cdots, A_{n_{\sigma}(n)}, Q_{n}\right\}$.
Proof. This is easily obtained from the strong density theorem of S. Saks (see Saks [7]).

Lemma 2. For any positive number ε and for any Borel function f, there exist an integer n and a subset α of $(1,2, \cdots, \sigma(n))$ such that
f is simple within ε on $\mathfrak{X}_{\alpha}=\left\{A_{n k}, k \in \alpha\right\}$, where $\mu\left(\cup_{k \in \alpha} A_{n k}\right) \geqq(1-\varepsilon)$, that is, f is constant within ε on each $A_{n k}$ for $k \in \alpha .^{*}$

Proof. It follows at once from Lemma 1.

It remains to prove that $\left\{T_{t}\right\}$ is weakly mixing. To this end, we suppose that the flow $\left\{T_{t}\right\}$ has an eigenfunction f such that

$$
f\left(T_{t}(x, y)\right)=\lambda^{t} f(x, y) \quad \text { for a.a. }(x, y) \in \Omega \text { and all } t
$$

Moreover, we may assume without loss of generality that $|f| \geqq K$ a.e. for some positive number K. It follows from Lemma 2 that for any positive number ε, there exist an integer n and a subset α of $(1,2, \cdots$, $\sigma(n)$) such that f is simple within ε on $\Re_{\alpha}=\left\{A_{n k}, k \in \alpha\right\}$. Now consider such a set $A_{n k}$ for a $k(1 \leqq k \leqq p(n)-1)$ fixed in α. Then, by virtue of the manner of the construction of $\left\{T_{t}\right\}$, one can easily verify that

$$
\mu\left(T^{p(n)} A_{n k} \cap A_{n k}\right)=\frac{1}{2} \mu\left(A_{n k}\right) \quad \text { and } \quad \mu\left(T^{p(n)+1} A_{n k} \cap A_{n k}\right)=\frac{1}{4} \mu\left(A_{n k}\right)
$$

$\left(T=T_{1}\right)$. Let $c(\varepsilon)$ be the constant approximating f on $A_{n k}$ with an error ε :

$$
|f(x, y)-c(\varepsilon)| \leqq \varepsilon \quad \text { on } E_{n k}
$$

where $E_{n k}$ is a subset of $A_{n k}$ such that $\mu\left(E_{n k}\right) \geqq(1-\varepsilon) \mu\left(A_{n k}\right)$. Then, by Lemma 2, there exists a positive constant $\delta(f)$ which satisfies

$$
|c(\varepsilon)| \geqq \delta(f) .
$$

If we let $(x, y) \in T^{p(n)} A_{n k} \cap A_{n k}$, then we have

$$
f\left(T^{p(n)}(x, y)\right)=\lambda^{p(n)} f(x, y)
$$

If we let $(x, y) \in T^{p(n)+1} A_{n k} \cap A_{n k}$, then we have

$$
f\left(T^{p(n)+1}(x, y)\right)=\lambda^{p(n)+1} f(x, y) .
$$

From the above relations, one obtains that

$$
\left|\lambda^{p(n)} c(\varepsilon)-c(\varepsilon)\right| \leqq 2 \varepsilon \quad \text { and } \quad\left|\lambda^{p(n)+1} c(\varepsilon)-c(\varepsilon)\right| \leqq 2 \varepsilon
$$

from which it follows that $\lambda=1$. This completes the proof.

References

[1] R. V. Chacon: Transformations having continuous spectrum. J. Math. and Mech., 16(5), 399-415 (1966).
[2] -: Change of velocity in flows. J. Math. and Mech., 16(5), 417-431 (1966).
[3] -: Weakly mixing transformations which are not strongly mixing. Proc. Amer. Math. Soc., 22(3), 559-562 (1969).
[4] P. R. Halmos: Lectures on Ergodic Theory. Math. Soc. Japan (1956).
[5] S. Kakutani: Lecture Note on Dynamical Systems. Yale Univ. (19621963).

[^0][6] G. Maruyama: The harmonic analysis of stationary stochastic processes. Mem. Fac. Sci. Kyushu Univ., Ser. A, 4, 34-106 (1949).
[7] S. Saks: Theory of the Integral. Warszawa (1937).

[^0]: *) Following Chacon [2], we say that for a positive number ε and for a measurable set A, a function f is constant within ε on A if there exist a constant c and a measurable subset E of A such that $|f(z)-c| \leqq \varepsilon$ on E and such that $\mu(E) \geqq(1-\varepsilon) \mu(A)$. Let $\mathfrak{U}=\left\{A_{1}, \cdots, A_{n}\right\}$ be a class of pairwise disjoint measurable sets. We say that a function f is simple within ε on \mathfrak{N} if it is constant within ε on each $A_{k}, 1 \leqq k \leqq n$ (the n constants are not necessarily equal).

