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13. Some Radii Associated with Polyharmonic Equations

By Shiré OgawA,* Takashi KAYANO,** and Ichizd YOTSUYA***®

(Comm. by Kinjir6 KUNUGI, M. J. A., Jan. 12, 1971)

Introduction. G. Pélya and G. Szego [2] defined the inner radius
of a bounded domain by a conformal correspondence from the domain
to a disk and showed that it can be also given by the Green’s function
of the domain relative to the Laplace’s equation du=0. In addition,
they defined the biharmonic inner radius of a domain by the Green’s
function of the domain concerning the biharmonic equation 4*x#=0.
Using the results, they calculated the ordinary inner and biharmonic
inner radii of a nearly circular domain. The aim of this paper is to
extend the above results. In the first place, we obtain the Green’s
function of a disk relative to the n-harmonic equation 4*u=0 and define
the n-harmonic inner radius of a domain. On the base of the results,
we compute the n-harmonic inner radius of a nearly circular domain
and it is remarkable that it is monotonously decreasing with respect
to integer n.

1. Inner radii associated with polyharmonic equations.

We use the following notations hereafter. Let D be a bounded
domain, C the boundary of D, a an inner point of D, z the variable
point in D and r the distance from « to z.

Definition 1. The function satisfying following two conditions
is called the Green’s function of D with the pole a relative to the n-
harmonic equation 4"u=0.

(1) The function has in a neighborhood of a the form

7*»=1 log 1+ h,(2),
where the function 2,(z) satisfies the equation 4"u=0 in D.

(2) On the boundary C, the function and all its normal derivatives
of order <n—1 vanish.

Theorem 1. If D is the disk |z|<R in the complex z-plane, the
Green’s function G.(a,z) of D with the pole a relative to the equation
A*u=0 is as follows,

- Riz—a)
Gn yR)=|2— 2(n-1) |, ‘*ﬂ_ﬁ
(a,2)=|2—al og | =0
n=l |y gy 2n=k—1)
——;- k=1 # legm {|R(z—a)[*—|R*—dz|"}*.
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Proof. We rewrite the function G,(a, 2) as
Ga(a, 2)=|2z—af" " log|z—a|—|z—af""" log lz—al

17t |z—q k- ) I,
—5 kﬂ—km—{lR(z——a)] —|R*—az [}k,

Then the part of the summation of the right hand side is obviously
n-harmonic. By the fact that if the function » is harmonic, the func-
tion 7Yy is n-harmonic, the second term of the right hand side of
the former equality is also n-harmonic. So our function satisfies the
condition (1) of the Green’s function. Now, we put

= R*—az P

R(z—a)

Then z is equal to 1 on the boundary |2|=R, and we can rewrite the
function G,(a,?) as

__ 1 ay =l
G.a,2)= 5 r {logx+ kZ=:1 k(l x) }

.

And if f,(x) denotes the following function
log o+ 3, - (1—a)%,
k=1 k

fo(D) and £©(1), for such an integer @ as 1<a<n—1, vanish. Conse-
quently, we can verify the function G,(a,?) satisfies the condition (2)
of the Green’s function. That establishes the theorem.
Given a domain D and an inner point a of D, G. Pélya and
G. Szegd [2] defined the inner radius r, of D with respect to the point
a as follows; The interior of D being mapped conformally onto the
interior of a circle so that the point a corresponds to the center of the
cirele and linear magnification at the point a is equal to 1, the radius
of the circle so obtained is 7,. When the Green’s function G(a, 2) of
D with the pole a relative to the equation du=0 is
G(a, 2)=log r— h(2),

they showed that the inner radius 7, is determined by

log 7,=h(a).
They also defined the biharmonic inner radius associated with the
biharmonic equation 424=0 as follows; Denoted the Green’s function
of D with the pole a relative to the biharmonic equation 4u=0 by

72 log 7+ hy(z)
and putting

323 — @),

the positive quantity s, is called the biharmonic inner radius of D
with respect to the point a.

Now we define the n-harmonic inner radius of a domain D associ-
ated with the n-harmonic equation 4"u=0.



46 S. Ocawa, T. KAvaNo, and I. Yorsuya [Vol. 47,

Definition 2. If the Green’s function of a domain D with the pole
o relative to the equation 4"u=0 is

r2®V log 7+ ha(2),

and we put
log 7,,,= —hy(a),
S _jh@|  (z2)
Sy @l (=2

we call the positive quantity 7, , the n-harmonic inner radius of the
domain D with respect to the point a.

Remark. When the domain D is the disk |2|<R in the complex
z-plane, it is well known that the Green’s function of D with the pole a
relative to the equation du=0 is

lo g‘ R(z—a)

R*—qdz

and the Green’s function relative to the equation 44 =0 has been given
by G. Pélya and G. Szego as follows,
R(z—a) 1 2 2 A2
B az SE {|{R(z—a)f—|R*—dz[}.
Using the preceding two Green’s functions and the Green’s function
given in Theorem 1, we can obtain the ordinary inner radius, the
biharmonic inner radius and the n-harmonic inner radius for an arbi-
trary integer n (n=3) of the disk |2|<R with respect to the point a,
which are the same value

b

[z—al logy

RZ _— | a '2
—5
2. Inner radii of a nearly circular domain.
In this section, we treat the radii of a nearly circular domain
defined in the former section.
Definition 3. Let
(1) r=1+ p(p)
be the equation of the boundary of a domain in polar coordinate » and
¢, where the periodic function p(¢) represents the infinitesimal varia-
tion of the unit circle. We call the domain bounded by (1) the nearly
circular domain.
We consider the Fourier series

(2) o(@)=a,+2 :21 (a, cos k@ + by, sin k),

where each coefficient a, or b, is the infinitesimal of the first order.
Terms of higher infinitesimal than the second order are neglected in
all the discussions of this section.

Lemma. Neglecting terms of higher than the first order, the
centroid c=|c|e” of the nearly circular domain r <1+ p(¢) is
(3) 0:2(a1+ib1).
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This lemma was given by G. Pélya and G. Szego [2], and they
obtained the ordinary inner radius 7, and the biharmonic inner radius s,
of the nearly circular domain with respect to the centroid ¢ as follows,

re=1+ap+ai+bi— 3> @k+1)ad+0Y),
(4)

o

se=1+4a,+ai+bi— > (4k—1)(a; + b}).

k=2
As an extension of (4), we prove the following theorem.

Theorem 2. For an arbitrary positive integer n, the n-harmonic

tnner radius ., of the nearly circular domain r <1+ p(p) with respect
to the centroid c is

(5) Pon=140y+0ai+bi— 3 (2nk—(@n—3)} (a2 +bY.
k=2

Consequently, r,, decreases monotonously with respect to n.
Proof. We seek the Green’s function G,(c, 2) of the nearly circular

domain with the pole ¢ relative to the equation 4"u=0 in the form
1 n—1 7./2(71,—10—1)

G (e, 2)=1r*"Vlogr —— > — (=D —p(r, )—q(r, @),
2 k=1 k

p(r, @)= i 3 11”‘*“(Ak, cos ko + By, sin ko),
k=0 7

ar,©)=3 S re+2(A}, cos ke + By, sin ko),
k=0 7=0
where 7/ is the distance from the centroid ¢=|c|e¥ to the point z=re’,
the coefficients of p(r, ¢) are of the first order and those of q(r,¢) of

the second order. The n-harmonic inner radius 7., is determined by
Ton " w1

Ul
= o

2(n—1) ( “g(mj--—pﬂ% 7)—q(el, 1)
:Wéb‘zltT)v —(— 1)"{Aoo+ (A, cos 7 + B,, sin r)| e+ A‘/’o},
and so we have
( 6 ) /rc,nz 1-— (_ 1)"{A00+ (A1o COo8s T + BIO sin T)l C| +A60}_ 2”2—3 Ago.

Setting

d=r and Fy=22Hloga— % L(1-11,

we can rewrite as

Gn(c, z) = Fn(z) - p('ry 90) - Q(T, §0)-
Owing to the equality

zn—l{%—"z-f 1 (1_1)’“}2%(2—1)"*,

= 2
We obtain the following equality
(7) 4 FD=n—DF,_ Q.

da
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On the boundary r=1+ p(¢) we have
Fy(A)=log "={p(p)—|c| cos (p—7)}

— 2 {o(@)—Ie|cos (= +ef sin’ (o—7),
(8) 1
F,(A)=1"logr — P (" —1)={p(p)—|c| cos (¢ — )},
F (A)=0, 35a;
that is, when « is larger than 2, F,(4) is negligible. Let v be the nor-
mal of the boundary of the nearly circular domain. Then the condition

aa;n »=0 on the boundary can be replaced by aa;n F,=0. On account
of (7) and (8), we have

S F=w-01 R (3)7

aa::l F,=(n— 1)'{F(z)(‘”) —(n Dn—2)F, (z)(gﬂ aw}'

So the boundary conditions are

aa P(1,€0)+P(90)§m P, Q)+ v a -4, 9)=0 0=za=n-3,
D p,o+0@) 0, o)+ o AN

—2" (n— 1)'{9(90)*10]008 (p— T)}2
Do+ p@) T, 9+ 0 adt, )

=2""(n—1)! {p(so)—lcl cos (so—r)}
+27(n—1) 1 {2@2n—3) + (n—D)(n—2)}{p(p) —|¢| cos (9 — )}’
+2" % n—1)!|cf sin® (p—7).
The first order terms yield
0° _ —
Wp(l, ©)=0 0=sasn-2,

10) et
97 p1, @) =20 (n—1) ! {p(e)—e] cos (p— ).

a n—1
Noting that, by the first condition of (10), p(r,¢) has the factor
(r*—1)""! and in view of lemma we have

|c| cos (¢ —7)=2(a, cos ¢+ b, bin ¢),
we obtain the equality

1) p(r, @) =@@*—1)""! {ao +2 i r*(ar, cos k¢ + by, sin ko) ;
k=2

in particular

12) Ap=(=1""a, and A,,=B,=0.

We consider the second order terms. The mean value of the function

q(r, ¢) with respect to ¢ is equal to nZ_;l 1145;. By the first equation
=0



No. 1] Some Radii 49

of (9) and that of (10) we have
aa
1,0)=0 0<asn-3,
o o1, ) sasn
so that it must be the form

n—=1

13) > A= =1 (Ar*+ B),

7=0
where A and B are constants. Comparing the constant coefficients of
q(r, ©) and (13), we obtain
(14) Ap=(—1)""B.
Taking now the mean values of second order terms we find
A+B=—@m-D|a¢+2 3] @+0),
k=2
(n+2)A+(n—2)B

= 2@n—8)~(—Dn+2}Had+2 3 @+ oD}

—8n > k(a2 + D)+ 4(a+ b)),
k=2

and so we have
B=—(a2+b)+2n > kol +b?)
k=2
—%(Zn—s) {a3+z > @+ }
By virtue of (6), (12), (14) and (15) we find

Ten=1+0,+ai+bi— 3 {2nk—@n—3)}(ai+bD).
k=2
This is the equality (5) of the theorem.

(15)
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