12. On Characters of Singly Generated C*-algebras

By V. ISTRĂŢESCU^{*}) and I. ISTRĂŢESCU^{**})

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1971)

0. Let A be an operator in B(H) the set of bounded operators on a Hilbert space H. Let $C^*(A)$ be the C^* -subalgebra of B(H) generated by A and the identity. By a character on a C^* -algebra we mean a multiplicative linear functional.

The purpose of the present note is to investigate the existence of characters on $C^*(A)$ for some special operators.

Our result is a generalization of the following theorem of W. Arveson [2]: if $\lambda \in \sigma(A)$, $|\lambda| = ||A||$ then there is a character ϕ on $C^*(A)$ such that $\phi(A) = \lambda$.

Our result is the following:

Theorem. If A is a spectraloid operator and $\lambda \in \sigma(A)$ such that $|\lambda| = r(A) = \omega(A)$, then there is a character ϕ on $C^*(A)$ such that $\phi(A) = \lambda$.

1. Let A be a bounded operator on H. A is called spectraloid if the spectral radius is equal to numerical norm i.e.,

$$\sup_{\lambda \in \sigma(T)} |\lambda| = \sup_{\mu \in W(A)} |\mu|$$

where

$$W(A) = \{ \langle Ax, x \rangle, \|x\| = 1 \}.$$

First we give a more simple proof of Arveson result and next we generalize the construction to our case. Suppose that $\lambda \in a(A) =$ the approximate point spectrum of A. Then there exists a sequence $\{x_n\}$, $||x_n||=1$ such that

 $Ax_n - \lambda x_n \rightarrow 0$

and since A is hyponormal

$$A^*x_n - \lambda x_n \rightarrow 0$$

Thus, for every polynomial $p(t, \bar{t})$ on $\sigma(A)$ we have

$$\sigma(\lambda,\lambda)\in\sigma(p(A,A^*))$$

Since $\{p(t, \tilde{t})\}$ is dense in $C(\sigma(A))$ we obtain that

$$b(p(A, A^*)) = p(\lambda, \overline{\lambda})$$

is a continuous linear functional on $C^*(A)$ which is clear multiplicative and thus the W. Arveson theorem is proved.

First we suppose that A is a spectraloid operator and the numerical range $W(A) = \{\langle Ax, x \rangle, ||x|| = 1\}$ is a closed set, and also $a(A) = a_p(A)$

^{*)} Institute of Mathematics Calea Griviței 21 Bucharest, Romania.

^{**)} Polytechnic Institute Timişoara Romania.

43

where a(A) is the approximate point spectrum and $a_p(A)$ the point spectrum. If $\xi \in \sigma(A)$ and

$$E_{\xi}(A) = \{x, Ax = \xi x\}$$

then ξ is called a normal eigenvalue if $E_{\xi}(A) = E_{\overline{\xi}}(A^*)$.

Since A is a spectraloid and if $\lambda \in \sigma(A)$ with $|\lambda| = r_A = \omega(A)$ it is clear that $\lambda \in \partial \sigma(A) \subset a(A) = a_p(A)$ which gives that $\lambda \in a_p(A) \cap \partial W(A)$. By a theorem of Hildebrandt (Theorem 2, [4]) λ is a normal eigenvalue. As in the case of hyponormal operators for all polynomials $p(t, \tilde{t})$ on $\sigma(A)$ we have

$$p(\lambda, \overline{\lambda}) \in \sigma(p(A, A^*))$$

which shows that

No. 1]

$$\phi(p(A, A^*)) = p(\lambda, \overline{\lambda})$$

is a character of $C^*(A)$ and the theorem is proved for this case. The general case reduces to this by a construction of S. Berberian [1] of an extension K of H via a generalized limit. We omit the details.

Remark. It is a problem if the theorem holds for p-spectraloid operators considered by Furuta and Takeda [3].

References

- [1] S. K. Berberian: Approximate proper vectors. Proc. A.M.S., 13, 111-114 (1962).
- [2] J. Bunce: Characters on singly generated C*-algebras. Proc. A.M.S., 25, 297-304 (1970).
- [3] T. Furuta and Z. Takeda: A characterization of spectraloid operators and its generalizations. Proc. Japan Acad., **43**(7), 599-604 (1967).
- [4] S. Hildebrandt: Über den Numerischen Wertebereich eines operators. Math. Ann., 163, 230-247 (1966).