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(Comm. by Kenjiro SHODA, M. ft. A., Jan. 12, 1971)

Introduction. In his paper [4] N. Radu has called that a com-
mutative ring R is in the class if every ideal of R is represented as
an intersection of primary ideals of R, and has shown that if R is in
the class , then CB+A-C+A holds for ideals A,B and C of R such
that C (’] (A+B), where {Bla e I} is the set of all ideals which

aIB
have the same nilradical with that of B.

The aim of this note is to generalize the above fact to noncom-
mutative rings. Throughout this note, R is a noncommutative ring.
The existence of unity is not assumed. The term ideals mean two-
sided ideals, and (x) means the principal ideal generated by an element
x. An ideal Q of R is called a (righO M-primary [n-primary] ideal if
ABQ and A Q, or ideals A and B, imply that B is contained in
the McCoy’s [nilpotent] radical of Q. The ight residual of an ideal
A by an ideal B is denoted by A" B, that is, A" B-{x e R IxBA}.
A ring R will be called that it is in the class with respect to the
McCoy’s [nilpotent] radical if every ideal of R is represented as an
intersection of M-primary [n-primary] ideals of R.

1. Throughout this note, A will denote the McCoy’s radical of
an ideal A of R, that is, A is the intersection of all minimal prime
ideals containing A. For an ideal B, I will mean the set of the indices
of the ideals B with B--B.

Lemma 1. The following conditions are equivalent"
(1) R is in the class with respect to the McCoy’s [nilpo$ent]

radical.
(2) Every strongly meet irreducible ideal is M-primary [n-

primary].
Proof. This is immediate from the fact that every ideal is repre-

sented as an intersection of strongly meet irreducible ideals.

Theorem 1. The following conditions are equivalent"
(1) R is in the class with respect to the McCoy’s radical.
(2) If A, B and C are ideals such that C_ ( (A +B) then CB+A

aIB
-C+A.
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(3) A-- (A + B.) (A B) for any ideals A and B of R.
aIB

(4) A.-- (A + B) ( J (A" B)) for any ideals A and B of R.
aIB alB

Proof. By using (2) in Lemma 1, we can prove the theorem by
the following implications" (1)@(2)(3)@(4)(1).

(1)@(2) Evidently we have CB+A
_
C+ A. Conversely, we shall

show that if any M-primary ideal Q contains CB+A, then Q contains
C+ A. Now suppose that QCB+A, then we have QCB and QA.
Moreover if QB, then QC. If QB, then there exists a0 e I such
that Q_B0. For, set B Q-Bo, then Bo--B Q-B. Hence we have
that C ((A+B)A+Bo_Q. Therefore in both cases we have

aIB
QC+A.

(2)@(3) If there exist two ideals A and B such that A ( (A /B)
aIB

(A" B), then we can find an element x in ( (A /B) (A" B) but not
IB

in A. Then x is in (A+B). Hence we have (x)+A=(x)B+A.
IB

On the other hand, we obtain (x)BA or x e A" B. Hence we have
(x) +A--A. This implies that x e A, which is a contradiction.

(3)@(4)" For every Be{BlaeI}, we have A- ((A+B)
alB

A (A" B). Hence we have A-- J ( ( (A + B) A (A" B))-- ( C (A + B)

A ([_) (A’B)).
ez e

(4)@(1)" If there exists a strongly meet irreducible ideal Q which
is not M-primary, then we have two ideals A and B such that ABe_Q,
A Q and BQ. Hence we have Q’BQ. Now we shall prove that
no B e {B] a e Iz} is contained in Q. If there exists B such that
BQ, then B_Q. Since B-B, we have B_Q. This implies
BQ, which is a contradiction. Therefore we obtain Q +BQ for
every c e Iz. Hence we have Q ( (Q + B) (Q" B) ( (Q + B)

aIB aIB
( [J (Q’B)).
aIB

2. We let A be the nilpotent radical of an ideal A of R, that is,
A-{x e R I(x)Q for some positive integer

Theorem 2. The following conditions are equivalent"
(1) R is in the class with respect to the nilpotent radical.

(2) If A, N and C are ideals such that C ( (A +N) and N is
----1

a finitely generated ideal, then CN+A C+A.
(3) If A, (b) and C are ideals such that C ( (A +(b)n), then

C(b)+A=C+A.

(4) A ( (A +N) (A N) for any ideal A and any finitely

generated ideal N.
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(5) A C (A + (b)) (A (b)) for any ideal A and any element b.

Proof. By using Lemma 1, we can prove the theorem by the
ollowing implications" (1)(2)(3)(5)(1) and (2)@(4)@(5).

(1)(2)" Evidently we have CN+AC+A. Conversely, we
shall show that if any n-primary ideal Q contains CN+A, then Q con-
tains C+A. Now suppose that QCN+A, then we have QCN and
QA. Moreover i QN, then Q_C. If QN, then there exists a

positive integer k such that NQ. Hence we have C_ ( (A +Nn)

A+NQ. Therefore in both cases we have QC/A.
(2)(3) and (4)@(5)’ These are immediate.
(3)(5) and (2)(4) These are similar to the proof of Theorem 1.
(5)(1)" If there exists a strongly meet irreducible ideal Q which

is not n-primary, then we can find two elements u and v such that
(u)(v) Q, u e Q and v e Q. Hence we have Q Q" (v) and Q Q/ (v)
for every positive integer n, a contradiction.

:. Now we shall investigate the previous conditions in the case
that the McCoy’s radical of every ideal coincides with the nilpotent
radical.

Lemma 2. For an ideal A of R, I- if and only if is a semi-
prime ideal.

Proof. If --z] and is not semi-prime, there exists, by 4.12
Theorem in [1], an element b such that b e ft. and (b). Hence we
have b e .=, a contradiction. Conversely, i is semi-prime and
b e ft., then there exists a positive integer k such that (b)fi. Hence
we have b e A by 4.12 Theorem in [1].

Proposition 1. For every ideal A of R, I--- if and only if --.
Proof. "If part" is immediate. As to "only i part", since A is

semi-prime by Lemma 2, A is an intersection of prime ideals. On the
other hand, AA- {PIP" a prime ideal containing A}. Therefore

we obtain easily =fi.
Remark. For instance [3], i (a)(b) is finitely generated or any

elements a and b of R, we obtain easily A=A. Hence, as is well
known, in commutative rings or in rings with the maximum condition
or ideals, we have A=A.

In the following, for an ideal B, J. will mean the set of the indices
of the ideals B. with B.= B.

Lemma :. If N is a finitely generated ideal, then (A +N.)

(A+Nn).

Proof. It is immediate that N-N or any positive integer n.



18 H. IZUMI [Vol. 4.7,

Hence we have (A / N,)c__ (A / N). Conversely, from N,-N
aGJN n=l

we have ,N. Since N is finitely generated, N(")c__N, for some

positive integer k(a). Hence we obtain (A +N,) (A + N).
aJN n=l

Theorem 3. If --]t for every ideal A of R, then the following
conditions are equivalent"

R is in the class with respect to the McCoy’s (nilpotent)

(2) in Theorem 1.
(3) in Theorem 1.
(4) in Theorem 1.
(2) in Theorem 2.
(3) in Theorem 2.
(4) in Theorem 2.
(5) in Theorem 2.

(9) A- ( (A +N) ( 3 (A" Nn)) for any ideal A and any
,----I =I

finitely generated ideal N.

(10) A- ( (A + (b)n) ( (A" (b)) for any ideal A and any
=I %=i

Proof. By Theorems 1 and 9, t is immediate that conditions
(I), ..., (8) are equivalent. Now we shll prove the theorem by the
following implications: (4)(9)(10)(8).

(4)(9): By (4) we have A-- ( (A/N.)( (A:N,))=
aIN aIN aJN

(A+N)( (A’N)). By Lemma 3 we have A(A+N)
a6JN n=l

( (A’N))A. Hence we obtain A-- (A +Nn) ( (A" N)).
n=l n=l n=l

(9)(10) and (10)(8): These are immediate.

(1)
radical.

(2)
(3)
(4)
(5)
(6)
(7)
(S)
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