3. A Note on Artinian Subrings

By Motoshi Hongan,*' Takasi NAGAHARA,**' and Hisao TOMINAGA**'

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1971)

Throughout, A will represent a ring with the identity element 1, J(A) the radical of A, and a subring of A will mean one containing 1. If S is a subset of A, $V_A(S)$ means the centralizer of S in A. A left A-module M is always unital and denoted by ${}_AM$.

The purpose of this note is to prove the following:

Theorem 1. Let B be a subring of A such that ${}_{B}A$ is f.g. (finitely generated), and T a left Artinian subring of A containing B. Let $\overline{T} = T/J(T)$, and $\overline{B} = B + J(T)/J(T)$. If $\overline{T} = \overline{B} \cdot V_{\overline{T}}(\overline{B})$ and the left \overline{T} -module $\overline{A} = A/J(T)A$ is faithful then B is left Artinian.

Our theorem contains evidently D. Eisenbud [3; Theorem 1b)] and draws out J.-E. Björk [2; Theorem 3.4] as an easy corollary.

Lemma 1. Let $M = Au_1 + Au_2 + \cdots + Au_n$ be a unital A-A-module such that $Au_i = u_iA$ and u_1 is left A-free. If for every non-zero ideal a of A there holds aM = M, then A is two-sided simple.

Proof. Without loss of generality, we may assume that $M \neq Au_1$ +...+ $Au_{i-1}+Au_{i+1}+\cdots+Au_n$ for each $1 < i \leq n$. We shall prove then by induction $M = Au_1 \oplus \cdots \oplus Au_n$, which implies at once that A is twosided simple. We set $M_k = Au_1 + \cdots + Au_k$ for $1 \leq k \leq n$. Evidently, $a_n = \{a \in A \mid au_n \in M_{n-1}\}$ is an ideal of A. If a_n is non-zero then $M = a_n M$ $= M_{n-1}$. This contradiction proves $M = M_{n-1} \oplus Au_n$. Next, assume that $M = M_k \oplus Au_{k+1} \oplus \cdots \oplus Au_n$ has been proved. It will be easy to see that $M_k \neq Au_1 + \cdots + Au_{i-1} + Au_{i+1} + \cdots + Au_k$ for each $1 < i \leq k$. If α is a non-zero ideal of A then $aM_k \oplus au_{k+1} \oplus \cdots \oplus au_n = M_k \oplus Au_{k+1} \oplus \cdots \oplus Au_n$ implies at once $aM_k = M_k$. Hence, by the first step, we obtain M_k $= M_{k-1} \oplus Au_k$, which completes the induction.

Proposition 1. Let $A = A_1 \oplus \cdots \oplus A_n$, where A_i is a two-sided simple [Artinian simple] ring with the identity element e_i . Let B be a subring of A such that ${}_{B}A$ is f.g. If $A = B \cdot V_A(B)$ then $V_A(B) = V_1$ $\oplus \cdots \oplus V_n$ and $B = B_1 \oplus \cdots \oplus B_k$ ($k \le n$), where V_i is Artinian simple and B_i is two-sided simple [Artinian simple].

Proof. At first, we shall prove the case $A = A_1$. Evidently, $A = Bv_1 + \cdots + Bv_s$ with $v_1 = 1$ and $v_2, \cdots, v_s \in V_A(B)$. As we can easily

^{*)} Tsuyama College of Technology.

^{**)} Okayama University.

see that bA = A for every non-zero ideal b of B, Lemma 1 proves that B is two-sided simple. Accordingly, $A = B \cdot V_A(B) = B \bigotimes_Z V_A(B)$, where Z is the center of B. Recalling that A is two-sided simple [Artinian simple] and f.g. over B, it is obvious that $V_A(B)$ is a simple algebra of finite rank over Z [and B is Artinian simple].

Next, we shall prove the general case. Obviously, B is a subdirect sum of $B'_i = e_i B$ $(i=1, \dots, n)$ and ${}_{B'_i} A_i$ is f.g. Since $A = B \cdot V_A(B)$ implies $A_i = B'_i \cdot V_{A_i}(B'_i)$, the case n=1 proves that $V_{A_i}(B'_i)$ is Artinian simple and B'_i is two-sided simple [Artinian simple]. Now, the rest of the proof will be evident.

Lemma 2. Let B be a subring of A. If there exists a left free Amodule M such that $_{B}M$ is f.g., then $_{B}A$ is f.g.

Proof. Let $M = \sum_{i=1}^{m} Bu_i$, and $\{w_1, \dots, w_n\}$ a free basis of ${}_{A}M$. Since $u_i = \sum_{j=1}^{n} a_{ij}w_j$ with some $a_{ij} \in A$, we obtain $(\sum_{i,j} Ba_{ij})w_1 \oplus \dots \oplus (\sum_{i,j} Ba_{ij})w_n = M$, whence it follows $A = \sum_{i,j} Ba_{ij}$.

The next is [2; Theorem 1.3], whose proof given in [2] is rather long and due to a lemma of Osofsky. We shall present here a notably short, elementary proof.

Lemma 3. Let A be left Artinian, and B a subring of A. If $\overline{B} = B + J(A)/J(A)$ is left Artinian and $\overline{A} = A/J(A)$ is left f.g. over \overline{B} , then B is left Artinian.

Proof. Since ${}_{B}\overline{B}$ satisfies both chain conditions and $J(A)^{h}/J(A)^{h+1}$ is left f.g. over $\overline{B}, J(A)^{h}/J(A)^{h+1}$ has a composition series as left *B*-module. Accordingly, J(A) being nilpotent, ${}_{B}A$ satisfies both chain conditions, whence it follows that *B* is left Artinian.

Now, we are at the position to prove Theorem 1.

Proof of Theorem 1. Left $\overline{T} = T_1 \oplus \cdots \oplus T_n$, where T_i is an Artinian simple ring with the identity element e_i . Then, \overline{B} is a subdirect sum of $B'_i = e_i \overline{B}$ $(i=1, \cdots, n)$ and $\overline{A} = e_1 \overline{A} \oplus \cdots \oplus e_n \overline{A}$ is the decomposition of (completely reducible) $\overline{T}A$ into the homogeneous components. Since $\overline{T}A$ is faithful, each $e_i \overline{A}$ is an f.g. non-zero left B'_i -module and there exists a positive integer n_i such that $M_i = (e_i \overline{A})^{(n_i)}$ (the direct sum of n_i copies of $e_i \overline{A}$) is left T_i -free. Then, Lemma 2 proves that $_{B'_i} T_i$ is f.g., whence it follows that $\overline{B}T$ is f.g. Since $\overline{T} = \overline{B} \cdot V_{\overline{T}}(\overline{B})$, Proposition 1 proves then \overline{B} is Artinian. It follows therefore by Lemma 3 that Bis left Artinian.

Corollary 1 ([3; Theorem 1b)]). Let A be left Artinian, and B a subring of A such that ${}_{B}A$ is f.g. If $A=B \cdot V_{A}(B)$ then B is left Artinian.

Corollary 2 ([2; Theorem 3.4]). Let A be left Artinian, and B a subring of A such that $_{B}A$ is f.g. If A/J(A) is a direct sum of division rings and f.g. over its center C, then B is left Artinian.

No. 1]

Proof. Let $\overline{A} = A/J(A)$, and $\overline{B} = B + J(A)/J(A)$. Since C is Artinian and $_{C}\overline{A}$ is f.g., $C \cdot \overline{B}$ is Artinian, and hence a direct sum of division rings. If T is the inverse image of $C \cdot \overline{B}$ with respect to the natural homomorphism of A onto \overline{A} , then J(T) coincides with J(A) and T is left Artinian by Lemma 3. Hence, B is left Artinian by Theorem 1.

Corollary 3. Let A be a division ring, and B a subring of A such that $_{B}A$ is f.g. If B satisfies a polynomial identity then B is a division ring. In particular, if B is commutative then B is a field.

Proof. By [1; Theorem 1], B is a (right and left) Ore domain and the quotient division ring of B contained in A is finite over its center. Then, to be easily seen, A satisfies a standard identity. Accordingly, A is finite over its center again by [1; Theorem 1], and then B is a division ring by Corollary 2.

References

- S. A. Amitsur: On rings with identities. J. London Math. Soc., 30, 464-470 (1955).
- [2] J.-E. Björk: Conditions which imply that subrings of artinian rings are artinian (to appear).
- [3] D. Eisenbud: Subrings of Artinian and Noetherian rings. Math. Ann., 185, 247-249 (1970).