3. A Note on Artinian Subrings

By Motoshi Hongan,*)
Takasi Nagahara, ${ }^{* *)}$ and Hisao Tominaga**)
(Comm. by Kenjiro Shoda, m. J. A., Jan. 12, 1971)

Throughout, A will represent a ring with the identity element 1 , $J(A)$ the radical of A, and a subring of A will mean one containing 1. If S is a subset of $A, V_{A}(S)$ means the centralizer of S in A. A left A module M is always unital and denoted by ${ }_{A} M$.

The purpose of this note is to prove the following:
Theorem 1. Let B be a subring of A such that ${ }_{B} A$ is f.g. (finitely generated), and T a left Artinian subring of A containing B. Let \bar{T} $=T / J(T)$, and $\bar{B}=B+J(T) / J(T)$. If $\bar{T}=\bar{B} \cdot V_{\bar{T}}(\bar{B})$ and the left $\bar{T}-$ module $\bar{A}=A / J(T) A$ is faithful then B is left Artinian.

Our theorem contains evidently D. Eisenbud [3; Theorem 1 b)] and draws out J.-E. Björk [2; Theorem 3.4] as an easy corollary.

Lemma 1. Let $M=A u_{1}+A u_{2}+\cdots+A u_{n}$ be a unital $A-A$-module such that $A u_{i}=u_{i} A$ and u_{1} is left A-free. If for every non-zero ideal \mathfrak{a} of A there holds $\mathfrak{a} M=M$, then A is two-sided simple.

Proof. Without loss of generality, we may assume that $M \neq A u_{1}$ $+\cdots+A u_{i-1}+A u_{i+1}+\cdots+A u_{n}$ for each $1<i \leqslant n$. We shall prove then by induction $M=A u_{1} \oplus \cdots \oplus A u_{n}$, which implies at once that A is twosided simple. We set $M_{k}=A u_{1}+\cdots+A u_{k}$ for $1 \leqslant k \leqslant n$. Evidently, $\mathfrak{a}_{n}=\left\{a \in A \mid a u_{n} \in M_{n-1}\right\}$ is an ideal of A. If \mathfrak{a}_{n} is non-zero then $M=\mathfrak{a}_{n} M$ $=M_{n-1}$. This contradiction proves $M=M_{n-1} \oplus A u_{n}$. Next, assume that $M=M_{k} \oplus A u_{k+1} \oplus \cdots \oplus A u_{n}$ has been proved. It will be easy to see that $M_{k} \neq A u_{1}+\cdots+A u_{i-1}+A u_{i_{+1}}+\cdots+A u_{k}$ for each $1<i \leqslant k$. If \mathfrak{a} is a non-zero ideal of A then $\mathfrak{a} M_{k} \oplus \mathfrak{a} u_{k+1} \oplus \cdots \oplus \mathfrak{a} u_{n}=M_{k} \oplus A u_{k+1} \oplus \cdots \oplus A u_{n}$ implies at once $\mathfrak{a} M_{k}=M_{k}$. Hence, by the first step, we obtain M_{k} $=M_{k-1} \oplus A u_{k}$, which completes the induction.

Proposition 1. Let $A=A_{1} \oplus \cdots \oplus A_{n}$, where A_{i} is a two-sided simple [Artinian simple] ring with the identity element e_{i}. Let B be a subring of A such that ${ }_{B} A$ is f.g. If $A=B \cdot V_{A}(B)$ then $V_{A}(B)=V_{1}$ $\oplus \cdots \oplus V_{n}$ and $B=B_{1} \oplus \cdots \oplus B_{k}(k \leqslant n)$, where V_{i} is Artinian simple and B_{i} is two-sided simple [Artinian simple].

Proof. At first, we shall prove the case $A=A_{1}$. Evidently, A $=B v_{1}+\cdots+B v_{s}$ with $v_{1}=1$ and $v_{2}, \cdots, v_{s} \in V_{A}(B)$. As we can easily

[^0]**) Okayama University.
see that $\mathfrak{b} A=A$ for every non-zero ideal \mathfrak{b} of B, Lemma 1 proves that B is two-sided simple. Accordingly, $A=B \cdot V_{A}(B)=B \otimes_{Z} V_{A}(B)$, where Z is the center of B. Recalling that A is two-sided simple [Artinian simple] and f.g. over B, it is obvious that $V_{A}(B)$ is a simple algebra of finite rank over Z [and B is Artinian simple].

Next, we shall prove the general case. Obviously, B is a subdirect sum of $B_{i}^{\prime}=e_{i} B(i=1, \cdots, n)$ and ${ }_{B_{i}} A_{i}$ is f.g. Since $A=B \cdot V_{A}(B)$ implies $A_{i}=B_{i}^{\prime} \cdot V_{A_{i}}\left(B_{i}^{\prime}\right)$, the case $n=1$ proves that $V_{A_{i}}\left(B_{i}^{\prime}\right)$ is Artinian simple and B_{i}^{\prime} is two-sided simple [Artinian simple]. Now, the rest of the proof will be evident.

Lemma 2. Let B be a subring of A. If there exists a left free A module M such that ${ }_{B} M$ is f.g., then ${ }_{B} A$ is $f . g$.

Proof. Let $M=\sum_{i=1}^{m} B u_{i}$, and $\left\{w_{1}, \cdots, w_{n}\right\}$ a free basis of ${ }_{A} M$. Since $u_{i}=\sum_{j=1}^{n} a_{i j} w_{j}$ with some $a_{i j} \in A$, we obtain $\left(\sum_{i, j} B a_{i j}\right) w_{1} \oplus \cdots \oplus$ $\left(\sum_{i, j} B a_{i j}\right) w_{n}=M$, whence it follows $A=\sum_{i, j} B a_{i j}$.

The next is [2; Theorem 1.3], whose proof given in [2] is rather long and due to a lemma of Osofsky. We shall present here a notably short, elementary proof.

Lemma 3. Let A be left Artinian, and B a subring of A. If \bar{B} $=B+J(A) / J(A)$ is left Artinian and $\bar{A}=A / J(A)$ is left f.g. over \bar{B}, then B is left Artinian.

Proof. Since ${ }_{B} \bar{B}$ satisfies both chain conditions and $J(A)^{h} / J(A)^{h+1}$ is left f.g. over $\bar{B}, J(A)^{h} / J(A)^{h+1}$ has a composition series as left B module. Accordingly, $J(A)$ being nilpotent, ${ }_{B} A$ satisfies both chain conditions, whence it follows that B is left Artinian.

Now, we are at the position to prove Theorem 1.
Proof of Theorem 1. Left $\bar{T}=T_{1} \oplus \ldots \oplus T_{n}$, where T_{i} is an Artinian simple ring with the identity element e_{i}. Then, \bar{B} is a subdirect sum of $B_{i}^{\prime}=e_{i} \bar{B}(i=1, \cdots, n)$ and $\bar{A}=e_{1} \bar{A} \oplus \cdots \oplus e_{n} \bar{A}$ is the decomposition of (completely reducible) $\bar{T} \bar{A}$ into the homogeneous components. Since $\bar{T} \bar{A}$ is faithful, each $e_{i} \bar{A}$ is an f.g. non-zero left B_{i}^{\prime}-module and there exists a positive integer n_{i} such that $M_{i}=\left(e_{i} \bar{A}\right)^{\left(n_{i}\right)}$ (the direct sum of n_{i} copies of $e_{i} \bar{A}$) is left T_{i}-free. Then, Lemma 2 proves that ${ }_{B_{i}} T_{i}$ is f.g., whence it follows that $\bar{B} \bar{T}$ is f.g. Since $\bar{T}=\bar{B} \cdot V_{\bar{T}}(\bar{B})$, Proposition 1 proves then \bar{B} is Artinian. It follows therefore by Lemma 3 that B is left Artinian.

Corollary 1 ([3; Theorem 1b)]). Let A be left Artinian, and $B a$ subring of A such that ${ }_{B} A$ is f.g. If $A=B \cdot V_{A}(B)$ then B is left Artinian.

Corollary 2 ([2; Theorem 3.4]). Let A be left Artinian, and Ba subring of A such that ${ }_{B} A$ is f.g. If $A / J(A)$ is a direct sum of division rings and f.g. over its center C, then B is left Artinian.

Proof. Let $\bar{A}=A / J(A)$, and $\bar{B}=B+J(A) / J(A)$. Since C is Artinian and ${ }_{C} \bar{A}$ is f.g., $C \cdot \bar{B}$ is Artinian, and hence a direct sum of division rings. If T is the inverse image of $C \cdot \bar{B}$ with respect to the natural homomorphism of A onto \bar{A}, then $J(T)$ coincides with $J(A)$ and T is left Artinian by Lemma 3. Hence, B is left Artinian by Theorem 1.

Corollary 3. Let A be a division ring, and B a subring of A such that ${ }_{B} A$ is f.g. If B satisfies a polynomial identity then B is a division ring. In particular, if B is commutative then B is a field.

Proof. By [1; Theorem 1], B is a (right and left) Ore domain and the quotient division ring of B contained in A is finite over its center. Then, to be easily seen, A satisfies a standard identity. Accordingly, A is finite over its center again by [1; Theorem 1], and then B is a division ring by Corollary 2.

References

[1] S. A. Amitsur: On rings with identities. J. London Math. Soc., 30, 464-470 (1955).
[2] J.-E. Björk: Conditions which imply that subrings of artinian rings are artinian (to appear).
[3] D. Eisenbud: Subrings of Artinian and Noetherian rings. Math. Ann., 185, 247-249 (1970).

[^0]: *) Tsuyama College of Technology.

