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Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kunihiko KO.DAIIA, M. J. A., Feb. 12, 1971)

Let P(x,D) be a linear partial differential operator with real
analytic coefficients defined on a domain containing the origin in R.
We denote its principal symbol by P(x, ). Assume that P(x, D) has
simple characteristics, that is, grad P,(x, ) :/=0 whenever P(x, )-----0.

In this note we first construct a local elementary solution for P
under the condition (P), which is concerned with the behaviour of the
characteristic surfaces. Secondly we prove that the condition (P) fol-
lows from the condition (NT), which is deeply related with the work
of Nirenberg and Treves [6], [7]. The condition (NT)x does not cover
all the possibilities of the solvable partial differential operators in the
theory o hyperunctions. Thus our result is weaker than that o
Nirenberg and Treves [7] concerning distribution solutions. Our
analysis is different rom theirs in the point that we treat the problem
in the framework of hyperunctions or rather in that o Sato’s sheaf C
defined on the cotangential sphere bundle (or co-sphere bundle in short).
For the notion of the sheaf C we refer the reader to Sato [8], [9]. We
hope, however, our method o construction of an elementary solution
given in Theorem 2 reveals the geometrical meaning of condition (NT)].

In Theorem 4 and Theorem 5 we also treat two cases which are not
covered by condition (NT). We remark that the three features, which
appear in Theorems 2, 4 and 5 respectively, are typical ones about the
behaviour o the characteristic surfaces.

We have constructed a local elementary solution E(x, y) for a linear
partial differential operator P with simple characteristics and with real
coefficients in its principal symbol and investigated its singularities in
our previous note [4], so that in the sequel we consider the case where
the principal symbol P(x, ) of P has the form A(x, )+iB(x, )
where A and B are real and B0. We can assume that gradA
:/:0 when P--O without the loss of generalities. The details of this
note will be published elsewhere. (See also Kawai [5].)

Our method of construction of an elementary solution for P is just
the same as that employed in our previous note [4]. We first repeat
the fundamental theorem essentially due to Hamada [1] in a form which
is suitable for the present situations.
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Let P(z, Dz) be a linear partial differential operator with holomor-
phic coefficients defined near the origin o C. Assume that P(z, D) has
the orm ,0 a(z, D,)3-/3z- where z’ denotes (z, ., Zn), that the
order of a(z, Dz,) is equal to or smaller than m--] and that a(z, D,)
1. Assume further that 3/3$P(z, $)=/=0 near (z, $)--(0, 0) where
P(0, $)--0. Then we have the ollowing Theorem 1. In this theorem
we denote by Z(z, w, $) a holomorphic function in (z, w, ) near (0, 0, 0),
positively homogeneous of degree 1 with respect to and has the orm
(Z--W, + 0(I Z--W ]21 ). This function Z is specified later in the course
of the construction of elementary solution to expand (x--y) using

curvilinear waves. (The expansion of -function by complex-valued
curvilinear waves is due to Sato.)

Theorem 1. Consider the following singular Cauchy problem"
D)E(z, w, , s)--0

P’(z, Dz, D)E(z, w, , s)]z==J(z, w, )/Z(z, w, ), where J(z, w, ) is a
holomorphic function in (z, w, ) and P’(z, Dz, D) is defined by giving
its symbol as P(z, a + , ’)-P(z, )/a, where stands for D. Then
we have a solution E(z,w,$,s), which is represented in the form- e(z,w, s)(z,w ,s) + eo(Z w,,s) log q(z,w, s) + e(z,w,,s),Ej=m---I
where e’s are holomophic /unctions and (z, w, , s) satisfies the char-
actevistic equation P(z, grad (z, w, , s))-O with the initial data
Z(z, w, ) on {z--s}.

Erratum. In our previous note [4], the operator P’(z, Dz) defined
in Theorem 1 should be replaced by the above P’(z, D, D).

We next give the definition of condition (P)(0,o). In the sequel we
drop the subscript (0, 0) or convenience.

Condition (P)" Choosing a suitable initial condition Z(z, w, $) which
is positively homogeneous o degree 1 with respect to $ and for which
Im Z(x, y, )>=0 holds on {(x, y, ) real and Re Z(x, y, )-0}, we have
Im if(x, y, $, s)>__0 on ((x, y, $, s) real, x >_ s, $ e I / and Re (f(x, y, $, s)
=0} and {(x, y, $, s) real, x<=s, e I- and Re (x, y, $, s)-0} where I/

and I- are locally closed set in an (n-1)-dimensional co-sphere S-and their union I-I+ U I- is a neighbourhood of $0 in Sn-.
Remark 1. When the space dimension n is larger than 2 the

suitable choice of Z(z, w, $) is important since we cannot solve the
Hamilton-Jacobi equations in a real domain in general to obtain
(x, y, $, s) for an operator with complex coefficients.

Remark 2. In general,.a real analytic function f(x) is said, after
Sato, to be of positive type if Im f(x)>=O holds when Re f(x)-O. An-
alogous to this terminology condition (P) may be said as follows" the
phase function (? can be chosen to be of half positive type for a suitable
choice of the initial condition Z which is of positive type. The notion
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of the half positive type is the key to the solvability. Compare the fact
that the singularity of a good elementary solution for a operator P with
real principal symbol is contained in "half of the bicharacteristic
strips". (See Kawai [4] about the precise statement.)

Theorem 2. Assume that P satisfies condition (P). Then we can
construct E(x, y) for which P(x, Dx)E(x, y)=(x--y) holds near (0, O, o,
_o) as the section of the sheaf C.

Sketch of the proof. We first choose Z(x, y, ) so that they satisfy
Z(x, Y, )= ,=1 (x--y)z(x, y, ) and are positively homogeneous of

degree 1 with respect to $. Then we define J(x, y, ) by 3(Z’ "’" Zn)
(, ..., )

and apply Theorem 1. Finally we define E(x, y) as the boundary value

of ($) E(x, z’,+w y, , s)ds- w($) E(x, z’, y , s) ds from the
i-

domain {Im >0}, where w($) is the volume element: (--1)-$d$... Ad$_Ad+A... Ad and a’ and are some constants. The
above integral is well-defined by condition (P). It is obvious from the
initial condition for E(z, w, , s) given in Theorem 1 that P(x, Dx)E(x, y)= J(x, y, ) .w($) holds. By Sato’s formula for the curvilinear

(z(x, y, )+ io)
J(x, y, )wave decomposition of -function we have

(Z(x, y, $) + i0)
(--2i) (x--y) since Z is of positive type. Thus we have obtained
(n-l)

the required E(x, y).
We next investigate the relation between condition (P) and con-

dition (NT)], which is related to the operator P itself more directly
than (P). We denote by F(o,0 the bicharacteristic strip of A(x, )
inssuing from (x0, $0) which satisfies P(xo, $)=0.

Condition (NT)" B(x, ) has a zero of finite even order at (x, $0,)
along F(,0,)for ]Xo--X]((l and $--’((1. (Cf. Nirenberg and Treves
[7] p. 460. Their condition () admits B0 on some F(,0,).)

Theorem . Condition (NT)x implies condition (P).
Sketch of the proof. It is sufficient to find a suitable initial con-

dition Z so that the phase function becomes of half positive type for
some suitable choice of local co-ordinate system. Since we have as-
sumed that P has simple characteristics, P(x, ) can be decomposed
into the form Q(x, $)($-a(x, $’)-ib(x, $’)) near (x, )=(0, $0), where
Q(x, ) never vanishes near (0 $0) and is positively homogeneous of
degree m-- 1 with respect to $ and a(x, ’) and b(x, $’) are real valued and
positively by homogeneous of degree 1 with respect to ’=($2, "-, $).
Using the invariance property of (NT)x by multiplication of non-
vanishing factor due to Nirenberg and Treves [6] 2, we can assume
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that --a(x, ’)-ib(x, ’) satisfies condition (NT)x. Thus it is suffi-
cient to investigate the properties of which satisfies 3q/3x
--a(x, grad, q)--ib(x, grad, )--0. We have a unique holomorphic
solution of the above first order partial differential equation when the
initial condition for is given on some non-characteristic surface by
the integration of the Hamilton-Jacobi equations in a complex domain
since we have assumed that the coefficients of P(x, D) are real analytic.
So we estimate Im (? using the asymptotic expansion of . Ater the
usual real coordinate transformation from (x) to (y) which straightens
the bicharacteristic strip through (x0, $0), that is, the bicharacteristic
strip of --(y, 7’) is parallel to the y-axis, where --a(y, ’) is the
expression of @l--a(x, ’) after the above coordinate transformation.
See Nirenberg and Treves [6] p. 21 as for the coordinate transformation.
For the sake of simplicity we write (x, @) instead of (y, ]) after the
coordinate transformation and use the letter y to denote a parameter
as in Theorem 2. It is obvious from our assumption that we have for
some neighbourhood V of the origin in R b(x, @)>__0 in V, or b(x,
in V. So we assume that b(x, @)>=0 in V. Assuming that (x,y,@,s)
has the form (s-- y)$+ (x’-- y’, ’}+ ilx’-- y’12- =o(X, y, , s), where
y, and s play the role of parameters, (?(x, y, $, s) are polynomials in
(x’--y’) of order k and (s,x’, y, $,s)-O for every k. Then ’s are
determined successively by solving ordinary differential equations and
it is not difficult to estimate Im for x>=s. (Cf. Nirenberg and Treves
[6] pp. 22-25). Thus we conclude that condition (P) follows from (NT)x.

Remark. In the above argument we have proved more than (P)
because Im 0 if xs (or x s). Hence we hope condition (P) will
be satisfied even when B,(x, ) vanishes identically on some bicharac-
teristic strip of A,(x, ), but we have not yet proved this fact.

As is clear from the above remark the case which condition (NT)
covers is one extreme case where P has a local elementary solution.
There are two other extreme cases which are easily treated by the theory
of pseudo-differential operators of finite type developed in Kashiwara
and Kawai [3]. Since the method is just the same as that indicated in
the last part of our previous note [4] and its idea is due to HSrmander
[2], we do not repeat its procedure in this note but indicate where the
changes are needed. Until the end of this note we assume that the
vectors gradA(x,$) and gradB(x,$) are linearly independent
whenever P(x, $)-0. In some cases we may use the assumption of
the linear independence of grad,)A and grad.)B on {P,(x, )
=0}, but under this weaker assumption we must be more careful in
technicalities. Therefore we adopt the above stronger condition of
linear independence in this note.
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Theorem 4. Assume that there exists a phase function (x, y, $)
satisfying the following conditions (i)(iv) near (x, y, )-(0, 0, o).
Then we can construct E(x, y) which satisfies P(x, D)E(x, y)-(x--y)
near (0, O, o,_ o) as sections of the sheaf .

) P(x, grad (x, y, ))-P(y, )
(ii) (x, y, $)=(x-y, $}+O(Ix--yll$l)
(iii) (x, y, ) is real analytic near (0, O, o) and positively homo-

geneous of degree I with respect to .
(iv) (x, y, ) is of positive type.
The method of the construction of E(x, y) given in our previous

note [4] Theorem 2’ runs in this case without any essential changes.
Remark that 1/P(y, ) is well-defined using the theory of substitutions
in the shea (Sato [9]) since we have assumed gradA and gradB
are linearly independent when P(x, )--0.

Remark. The local elementary solution E(x, y) constructed above
plays an essential role to characterize the structure of the sheaf

Cokerc P* using another pseudo-differential operator. The details will
be given in our next note.

We denote by P(x, ) the form with complex conjugate coefficients
o P(x, ), that is, P(x, )--,1- a(x)" if P(x, )=1.1= a(x).

Theorem 5. Assume that the commutator of P(x, Dx) and
P(x, Dx) vanishes identically. Then we can construct a local element-
ary solution near (0, O, o, _o) for any o.

In this case we can integrate the Hamilton-Jacobi equations in a
real domain and obtain real valued (x, y, $) satisfying P(x, grad )
=P(y, ) near (0, 0, $0) and positively homogeneous of degree 1 with
respect to $. Thus the proof is just the same as in our previous note
[4] Theorem 2’.

Remark. I P(x, y,D,D) has the orm Q(x+iy, Dx--iD) or
some Q,(z, ), then the condition of Theorem 5 is trivially satisfied.
Therefore such an operator is very close to an operator with real princi-
pal symbol rom the viewpoint o the behaviour of the characteristic
surfaces. Such a class of operators appeared in a discussion with Sato
and Kashiwara.
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