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61. An Extension of an Integral. 1II

By Masahiro TAKAHASHI
Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjiré KUNUGI, M. J. A., March 12, 1971)

1. Lemmas. This section is the continuation of section 3 in [1].

Assumption 3. J is an abstract integral with respect to (S, G, J).

For each fe <, we can define a map u, of R(f) into J by pA(X)
=J9X, Xf) for X ¢ R().

Lemma 13. The map p, is o J-valued pre-measure on R(f) for
any fed.

Lemma 14. If f,9e¢F and X c¢ R(f)NR(g), then X e R(f+9)
and py,o(X)=pA(X) + £2,(X).

Lemma 15. Supposethatfe F,XecS,andY e 3. Then XY ¢ R(f)
if and only if X e R(Y)), and these mutually equivalent conditions
imply that p(XY)=py(X).

Proof. This follows from Lemma 7 in [1].

Let €7 be the system of neighbourhoods of 0 ¢J. Denote by 2
the set of all elements (X, f) ¢ § satisfying the following condition:
for any &, % e 3(f) such that £=7%=X and for any V € €/, there exists
a positive integer » such that g, (§(D))— p,(np(m)) e V for any I=n and
m=n.

Lemma 16. (XY, N)e® if and only of (X,Yf)e Q for any
X,YeSand fe 4.

Proof. Suppose that (XY, f)e 2. Lemma 11 implies that
(X,Y)efl. Let & and 7 be elements of I(Y f) such that £=7%=X and
let V be an element of C{/. It follows from Corollary to Lemma 7
that Y&, Y7 e 2(f) and _ﬁ=?7§=XY. Hence we have an n such that
1Y ED)— p,((Yn)(m)) e V for any I=n and m=n. For this n and for
I=zn and mzn we have py(§(1)— py,(n(m))= p(EDY)— p;(p(m)Y)
=p,((YED)— p,((Yn)(m)) € V. Thus we have (X, Y f) € 2. Conversely
suppose that (X,Y) e Q. (XY, f)e follows from Lemma 11. Let
¢, be elements of 3(f) such that {;=XY for ¢=1,2, and let V be an
element of ¢}/, Lemma 8 implies that there are &, ¢ (Y f) such that
£,=Xand{,=Y&, fori=1,2. Since (X, Y ) e 2, we have an n such that
Ly (&) — py (E(L)) e V for any I;=n. For thisnand for l,=n,1=1,2,
we have ﬂf(Cl(ll)) — ﬂf(Cz(lz)) = ﬂf((Y$1)(l1)) — ﬂf((Y'Ez)(lz)) = ﬂf(él(ll)Y)

— ¢ (& MY)= py (§,(1))— pty (§,(1)) € V, which implies that (XY, f)e 2.
Thus the lemma is proved.
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Denote by S(f) the set {X|(X, /) e 2} for each feF. We have
another expression of S(f) as follows:

Lemma 17. Forany fe F, S(f) is the set of all elements X e 3(f)
satisfying the following condition: for any &,7n e 2(f) such that E=7
=X and for any V e C), there exists a positive integer n such that
PAED)— p(p(m)) e V for any I=zn and m=n.

Lemma 18. For any fe F, S(f) is an ideal of X and is o pseudo-
ag-ring.

Proof. It is sufficient to show that 1) XY € S(f) for any X ¢ S())
and Y ¢ 3, and 2) X, + X, ¢ S(f) for any X,, X, € S(f) such that X,X,=0.
Let us first prove1). Put Z=XY. X e S(f) implies that X ¢ 3(f) and
hence it follows from Lemma 6 that Z=XY ¢ 3(f). Let & and 7 be
elements of 3(f) such that £=7=2Z and let V be an element of C{/.
Assume that for any positive integer n there were [,=n and m,=n
such that g (§(1,))— p,(p(m,) e V. It follows from our assumption

that there are sequences I, and m,, k=1,2, - - ., such that max (I, m,)
<min (l,,, My,,) and such that g (§1)— p;(n(my) ¢ V for each
k=1,2,.... Now Lemma 6 implies that X+ Z ¢ 2(f) and hence we

can write X+ Z=C for some { ¢ 3(f). Putting &m)=£(,)+{(n) and
(M) =n(m,)+{(m) for n=1,2, ..., we have &,y e 3(f), &=E+(=2Z
+X+2)=X, and 7'=X. Since X e S(f) we have an n such that
pAED)— p(n'(m)) e V for any l=n and m=n. On the other hand we
have p,(§'(n))— p, (') = p (6 +EM) — p(n(m,) +E(m) = (W)
— p(n(m,)) ¢ V, which is a contradiction. Hence we have an n such
that p,(§(D)— p,(p(m)) e V for any [=n and m=n, and thus Lemma 17
implies that XY =72 ¢ S(f).

Now let us prove 2). That X,+ X, e 3(f) follows from Lemma 6.
Let & and 5 be elements of 3(f) such that 5.—_ﬁ=X1—|-X2 and let V be
an element of C{/. We have U ¢ ¢/ such that 2UC V. Since X,£ and
Xy are elements of 3(f) (Corollary 2 to Lemma 6), since X,£=X &
=X,X,+X)=X,, and since X,;n=X,, we have n,, i=1,2, such that
pAXEAD)— p(Xm(my)) e U for any I, =n; and m,;=n;. For n=max
-(ny,m,), and for any l=n, and any m=n, we have pu(§()— p,(n(m))
= p,((X, 4 X)EWD) — p1,((X, + X )7 (m) = {1, XK, E D) — 1, (X, (m))}
+{p(XED)— p(X,p(m)} e U+ UCV. Hence it follows that X, + X,
€ 8(f) and thus the lemma is proved.

Assumption 4. For X,eS,t=1,2, ..., such that X;|0 (i—o0),
and for any g=G, it holds that I(X;, g)—0 (1—o0).

Lemma 19. The map p; is o J-valued measure on R(f) for any
fed4.

Proof. Suppose that X, e R(f), i=1,2,-.-, and that X,|0
(t—o0). Then it follows from Assumption 4 that ¢ (X,)=9X,, X.f)
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=9X 4 XX, f)=IX,, X,f)—0 (i—0). Hence Lemma 13 implies that
/s 18 a measure.

Lemma 20. QR(f)CS(HCTI(H)S for any fe F.

Proof. Let us prove that R(f)CS(f). Let X be an element of
R(f). That X ¢ 3(f) follows from Corollary 1 to Lemma 6. Let &,
be elements of 3(f) such that &,=X, for ¢=1,2, and let V be an ele-
ment of Cf/. We have U ¢ Cf/ such that U—UC V. Since §;()1X (j—0)
and since p; is a measure, it holds that g (§.())— u(X) (G—o0).
Hence, for ¢=1,2, we have 7, such that p,(£,(5))— p¢,(X)e U for any
j=n;. For n=max (n,n,), and for any I=n and any m=n, we have
D) — 1 (E ) = {2 (D) — 1,0} — (A Em) — (XD} e U~ UCV.
This implies that X e S(f) and hence R(f)S(f).

Corollary 1. SCS(9) for any g e G.

Proof. This follows from Lemma, 3.

Corollary 2. SxgcQcfcIx9.

Proof. For (X, g) e Sx G, Corollary 1 implies that X € S(g9). This
implies (X, 9) ¢ 2, and hence SX GC Q.

Put GX)={f|(X, f) ¢ 2} for each X ¢ 3. Then we have

Lemma 21. GX)CGX)CF for any X e 3. Further GC @(X) if
Xed.

Proof. For XeS, §CG(X) follows from Corollary 2 to Lemma 20.

Lemma 22. Suppose that X e X, f; ¢ G(X) fori=1,2,.--,n, and
that f,e G(X). Further suppose for any V e Cl there exists U e C
satisfying the following condition: if Y and Z are elements of

*o R(f) such that YC X and ZC X, and if p,(Y)— pt;(Z) € U for any
1=1,2,...,n, then p;(Y)—p;(Z) e V. Then it holds that f,c G(X).

Proof. We are proving that (X, /) e 2. Let § and 7 be elements
of 3(f,) such that £=7=X and let W be an element of C|/. Write
pi=py, for i=0,1, -..,n. Then it suffices to show the existence of a
positive integer » such that £,(§&)p))— (@) € W for any p=r and
q=r. Let us show this.

Since (X, f) e for any i=0,1, .- .,n, Corollary 2 to Lemma 10
implies the existence of { € N, J(f,) such that {=X. Put N={{, k)|j
and k are positive integers} and write (7, k) < (5, k'), for (4, k), (7', K¥) ¢ T,
if and only if the two inequalities <35’ and k<% hold. Then J be-
comes a directed set and hence, putting a; = p,(§(/)C(k)), we have a
directed sequence a; 4, (7, k) € 71, in J.

We assert that the sequence a; 1y, (4, k) € Jl, is a Cauchy sequence.
Suppose this were false. Then we have an element V, of C/ satisfying
the condition: for any (7, k) e Il there is (', k) € 1 such that (4, %)
<@, K) and ay p—a; eV, Thus we have sequences of positive
integers jn, kn, and l,,, where m=1,2, ..., such that, for each m,1,,,
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=max (m’ jm’ km)3 (lm, lm) é (jm’ km)’ and O smkm) — Vst € V0° Then
D=0, k=W =0, k)< -+, and liml,=oc0. Put 4@m—1)

m—oco

=&, )¢, and A@2m)=E&(,)C(k,) for m=1,2,.... Then we have
Ae(Mr, 2(f) and 2=X. Now let U, be an element of |/ satisfying
the condition: if Y and Z are elements of (M7, R(f,) such that YCX
and Zc X, and if p(Y)— p(Z2)e U, for any i=1, then pu(Y)— u(2)eV,.
Since (X, fy) € 2 and 2 ¢ 3(f,) for i=1, and since =X, we have a posi-
tive integer m,, for each {=1,2, - - ., n, such that p,(A(p))— p((Q)) € U,
for any p=m, and ¢=m,;. Putm=max (m,, m,, ---,m,). Then it fol-
lows from 2m >2m—1=m=max m; that p,(1@2m))— p(A2m—1))e U,
for each ¢=1. For this m it follows that a;,, .., — Cm,im = H(ET)E(En))
— to(ELDEAL)) = po(A2(2m)) — p(A(2m—1)) ¢ V. This is a contradiction
and hence our assertion is true.

That which is proved above implies that, for W,e C{/ such that
—W,=W, and 8W,C W, there is (j,, k,) € Il such that o, — @4z € Wo
for any (4, k) =(,, k). Let U be an element of Ci/ satisfying the con-
dition: if Y and Z are elements of M7, R(f,) such that YCX and
ZcX, and if p,(Y)—py(2) e U for any ¢=1, then u(Y)— p(Z)e W,
Since (X, f,) € 2, for i=1, since £ and { are elements of X(f;), and
since £E{=C=2X, we have a positive integer m,, for each i=1,2, ---,n,
such that 2, ((EO®)— p(L(@)eU for any p=m,; and g=m,; Put
ri=max (jo’ ko’ My Mgy + vy mn)-

For the integer 7, defined above, we shall show that g,(&§(p))
— 1((@) € 4W, for any p=r, and ¢=r,. Since 1, (D) — (@) e U
for any =1, it follows from the definition of U that g,((§0)(p))
—1(8(@) e W,. Hence, p(E{®)= pE®LIM®)=a,, implies that
D apn—#L@) e W, Now put Y=£®) and Y,=E&®E(k) for
k=1,2,.... Then we have Y,Y,.c R(f,), for each k, and Y, 1Y
(k—o0). Hence it follows from Lemma 19 that p(Y;)— p(Y) (k—o0)
and thus we have k =k, such that p(Y,)—p(Y)eW, For this
ki, agen=pE@E(E)) = p(Y,) implies that 2) (@) —a i, € W,.
Further, since (p, k,) =(4,, k) and since (p, ) =y, o), O,z — Eso,10) ANA
Qip, 5y — g0 1 aTE elements of W, and thus we have 3) a(, i, — @y, € 2W,.
Then it follows from 1), 2), and 3), that p,(§®))— ¢(L(@) € 4W,.

In an analogous way, we have a positive integer r, such that
L) — 1(E(Q) € 4W, for any p=7, and ¢=7,. For r=max(r, ),
and for any p=r and ¢=7, we have u(§®))— p,(9(@)={p(E®))
— 1 ENY—{ 1(9(@) — o C(1)} € AW, — AW, =8W,CW. This completes
the proof of Lemma 22.

Corollary. For any X ¢ ¥, GQX) is a subgroup of F.

Proof. It suffices to show that f,—f, e G(X) for given f; e G(X),
i=1,2. For f,=f,—f,, it follows from Lemma 12 that f,c G(X). For
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any V e C{/, there exists U e C)/ such that U-UCV. Let Y and Z be
elements of M., R(fy) such that YCX and ZC X and suppose that
L (Y)—p,(Z) e U for i=1,2. Then p,;(Y)— pt;(Y)— pt;(Z)={p;,(Y)
— 2D}~ (11D — 1, DY = {11,,(V) — 11, D}~ {1, (D) — p, (D} e U
—UcCV. Thus the lemma implies that f,—f,=f, ¢ G(X).

Assumption 5. J is Hausdorff and complete.

Lemma 23. For each fe F, the measure p, is uniquely extended
to a J-valued measure on S(f).

Proof. Lemmas 4,5, and 17 imply that our lemma follows from
Theorems 1 and 2 in [5].

For each fe &, denote by i, the extended measure on S(f) stated
in Lemma 23. Then we have

Lemma 24. There exists a unique map 9 of 2 into J satisfying
the following condition : if (X, f) e Q,if X, e Swith X, fe G,1=1,2, - .-,
and if X4 X (i—o0), then J(X;, X, f)—IX, f) (i—co). Further it holds
that JX, )= g, (X) for any (X, f) e Q.

For the map J of 2 into J stated above we have

Lemma 25. The map J has the following properties:

1) J1is an extension of Y.

2) Suppose that X,Y e 3 and that feF. Then (XY,f)ef if
and only if (X,Yf)e Q. Further these mutually equivalent conditions
imply that JXY, )=IX,Y[).

8) For any fized feF, the map J,(X)=IX,f) on S(f) is' a
measure.

4) For any fivzed X e 3, the map IJx(H)=I9X, f) on GX) is a
homomorphism.

Proof. 1) and 3) follow immediately from Lemma 24. Let us
prove 2). The equation J(XY,f)=J9(X,Yf) is proved as follows.
Since (X,Yf) e 2, we have & ¢ 2(Y f) such that £=X. Lemma 15 im-
plies that py(§(m)=p(YEm)), for n=1,2, ..., and hence we have
JX, Y )= Pr (X)=lim pr(S(n))=}Liqrg L (Yém) = g (XY)=JIXY, f).

To prove 4), suppose that X ¢ 3 and that f,ge @(X). Then we are
proving that J(X,f+¢)=9X, )+IX,9). Since (X, f),(X,9), and
(X, f+9) are elements of 2, there exists an element & of 3(f)N 2(g)
N2(f+g) such that £=X. Then it follows that JX, f+ 9 =[.(X)
=ll_lf} Lrig(EM) = }}EE {EM) + p,(EM)} = }EB 1 (Em) + }LIEI: 2(E(n))

=X+ ,X)=9X,N+IX,9). Thus the lemma is proved.

2. Proof of Theorems 1 and 2 in [1]. Under the notations and
the assumptions in section 2 in [1], Assumptions 1 and 2 in section 3
in [1] are satisfied (M is the base space of I'). Note that S is the
o-ring ¥ in section 3 in [1]. For an element x of O, denote by J=J,
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the derived abstract integral from ¢ relative to x. Then Assumptions
3,4, and 5 in section 1 are satisfied. Putting Q,={(X, /) |(X, f, ) e 2},
where £ is the carrier of I', we see that 2, coincides with the set 2 in
section 1. Denote by J, the map J of 2, into J stated in Lemma 24.

Then, 1),2),3), and 4) in Theorem 1 follows from Corollary 2 to
Lemma 20, Lemma 16, Lemma 18, and Corollary to Lemma 22, re-
spectively.

To prove Theorem 2, put a(X,f, t)=J,X,f) for (X,f, ) e Q.
Then we have a map ¢ of 2 into J and it follows from Lemma 25 that
o satisfies the conditions in Theorem 2. The uniqueness of ¢ follows
from (i), (ii), and (iv) in the proof of Proposition 1 in [1].
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