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1. Let G be a unimodular locally compact group of type I. For
such a group, so-called Plancherel ormula was given by F. I. Mautner
[2], I. E. Segal [3], and H. Sunouchi [4], as follows.

Consider the dual (the set of all equivalence classes o irreducible

unitary representations) of G, and put U(w)-.[of(g)U(w)dg_ or any

function f in LI(G) and any unitary representation w={(w), Uq(w)} o
G. Then, there exists a measure/ (Plancherel measure) over , such
that or any unction f in L(G) L(G), the equation (1) is valid.

Here Ill UA)III is the Hilbert-Sehmidt norm of the operator Ue(w).
This formula is considered as an extension of the Planeherel

formula for abelian locally compact groups. But in this abelian ease,
becomes an abelian locally compact group too, and the Planeherel

measure/z is just invariant measure over G.
The group operation of is given by the ordinary product of char-

acters as functions on G, that is, the Kroneeker product of 1-dimen-
sional representation. So the invarianey of Planeherel measure is that,

dZ(Zo(R)Z)=--d/z(Z), for any Z0 in , ( 2
and this is equivalent to,

(3)
for any X0 in and f in LI(G) L2(G).

Here f shows the Fourier transform of f.
In general case, an analogue of (3) may be constructed as ollows.

At first, by virtue of (1), we replace Fourier transform f of function

f by the operator-valued unction U(w), then the term If(Z0(R)Z)l is

replaced by [1[ U(wo(R)W)Ill.
On the other hand, the well-known relation w0(R) t, for

dim oo

the regular representation 9 and any representation 090, suggests that,
in general form, the factor (dim w0)- is needed in the left hand side.

So, one of the purposes of this paper is to show the equation (4) for
finite dimensional representation w0.
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P
[dim w0)-J III UAw0(R)) III d/2(w)--J III UAw) III dz(w). ( 4 )

For the case when w0 is infinite dimensional the left hand side of
(4) is meaningless, so we have to take some modification.

The definition of the Hilbert-Schmidt norm gives,

III U(o)II1= U(o)(v(o)V())ll. ( 5 )

Here (v(w0)} and (v(w)} are any orthonormal basis in (w0) and (w)
respectively.

For fixed basis (v(wo)) of (w0), we take a partial sum of (5) with
respect to ], andput

1

then our required equation is

But, in this paper, we get the stronger result as follows.

Theorem. For any V(Wo) in (Wo), such that V(Wo) 1, the equa-
tion (8) is valid.

x az(.) (8)
for any f in LI(G) L(G).

Evidently (4) and (7) are immediate results of (8).
Lastly we shall give an example, for which the limiting process in

(7) can’t enter under the integral sign, i.e.,

lim O(w) dfl(w) Ill U,(w) ]][ dz(w). ( 9

2. Proof of the theorem. The proof is given by direct calcula-
tions. We take v(w0), {vg(w)}, f, as in the theorem, and an orthonormal
basis {v(w0)} in (w0).

X (Uq,(w)v(w), Uq=(w)v(w))d&d&} d(w)

X (Uq,(Wo)V(Wo), v(Wo))(Uq,(w)v(w), U,(w)v(w))dg,dg} dz(w).

But in the right hand side, the absolute value of the integrand is

bounded by
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X I(Uq(w)v(w), Uq(w)v(w)l dgd&

G ]f(gl) ]f(g2) ( ]<Uql(O)V(O)’ V$(0)> 2)1/2

( (U(0)v(o0), v(o0) I)/ U()v()II U()v()II dgdg

So by the Pubini’s theorem, we can take the sum by before the
integrals by

(U(w)v(w), Uq(w)v(w))dgdg d(w)

Here ut(g) (Uq(w0)v(w0), vt(wo)}.

=Ye Z If(g)l I(Uq(wo)V(Wo), v(wo)l dg

That is, the equation (8) is proved.
Corollary. If dim o0 < +, then,

(dim w0)- a Ill U,(wo@W)I d(w)= a I1 Sx(w)Ill dfl(w). (10)
for any f in L(G) L=(G).

3. Example. Let G be the real unimodular group of second
order. Now we shall construct f, w0 on G for which the inequality (9)
is valid. We quote the notations in the previous paper [5].

At first, we fix the positive integer (or half-integer) m (& 3/2), and
the normalized highest vector v in (Dg), that is, v is determined up
to constant factor as the vector satisfying

F+(Dg)v=O. (11)
Put

f(g) (Uq(D;)v, v, (12)
then the V. Bargmann’s results ([1]) and calculations of eigenvalue
for Laplacian show the followings,

(a) f(g) is in L(G) L(G).
(b) For given irredudicble representation w and its canonical
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basis {(w)} (el. [51 p. 318),

(Uf(w)(w), (w))=a (U(D)v,, v)(U(w)(w), (w))dg

(2m- 1)- ,_ ,_, for w D,
=0, for w--Dz(nCm),D+, Ci, I.

(13)

that

(b) shows that,
U.(w)v(w)--O, for weds, (14)

U(D;)v-(2m--1)-(v, v)v, or v e (Dg). (15)
That is,

Ill U(w)lll-(2m-1)-, for w--D,
(16)

=0, otherwise.
From the definition of the Hilbert-Schmidt norm, it is easy to see

II Uf(o)lll-dlll Uf(D)ll[2:d(2m--1) -2.
Here d is the multiplicity o D-components in the representaiton

0)0()O).
On the other hand, we can deduce the ollowing by just similar

arguments as the proof of Proposition 1 in [5].
Lemma. For fixed s (positive integer or half-integer), D:@o

contains D once time only when w-D(n s+ m, and m+n+ s inte-
ger). And for the other irreducible , D:@w does not contain D;.

This lemma determines the value of the unction,
IU(D:w)=(2m-1)-, or w=D=(ns+m,m+n+s; integer),

=0, otherwise.
That is, for w0=D:,

lim (w) lim U(D@)(}@(w))

lim U(D:@w)(@(w))[

lim I ]

So that,

lim (m) d()-O,

]]U](w)]] d(w)=e ]f(g) dg=(2m-1)-O"

References

1] V. Bargmann: Irreducible unitary representations of the Lorentz group.
Ann. of Math., 48, 568-640 (1947).

2 F. I. Mautner: Unitary representations of locally compact groups. I:
Ann. of Math., 51, 1-25 (1950), II: Ann. of Math., 52, 528-556 (1950).



256 N. TATSUUMA [Vol. 47,

[3]

[4]

[5]

I. E. Segal: An extension of Plancherel’s formula, to separable unimodular
groups. Ann. of Math., 52, 272-292 (1950).

H. Sunouchi: An extension of Plancherel formula to unimodular groups.
TShoku Math. J., 4, 216-230 (1952).

N. Tatsuuma: A duality theorem ’or the real unimodular group of second
order. J. Math. Soc. Japan, 17, 313-332 (1965).


