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1 Introduction. By an extension of a space X is meant a space
containing a dense set homeomorphic to X (also denoted by X). A point
in the extension not belonging to X is represented by a family of closed
sets in X with PFIP which consists of the intersections of X and the
closures of the neighborhoods of the point. The collection of all max-
imal families of closed sets in X with PFIP and suitable topology then
constitutes an H-closed extensions w(X) of X, called the Wallman H-
closed extensions and possesing properties similar to those of the Stone-
(ech compactification (T) of a completely regular space T. In par-
ticular, continuous functions on X can be continuously extended over
o(X) and there is a variant of the Stone-Cech theorem [8, p. 153] for
Hausdorff spaces.

There are two kinds o normal bases or spaces in literature" one
is given by Fan and Gottesman for compactificating regular spaces [4]
and the other is employed by Frink to identify complete regularity [6].
These bases are, in act, equivalent in regular spaces. A new concept,
called pseudo-normality which is similar to but more general than
normality, is introduced as a characterization of complete regularity.
The Fan-Gottesman compactification X* of a completely regular space
X is homeomorphic to the Stone-ech compactification fiX and is also
homeomorphic to Aleksandrov a’X [1, p. 405].

The Stone-Weierstrass approximation theorem and the Tietze ex-
tension theorem will be generalized to Hausdorff spaces. Aleksandrov
[2, Surveys, p. 54] and Pomonarov raised the question" for each com-
pletely regular space T whether the Stone-Weierstrass theorem holds
in the Wallman H-closed extension w(T) (topologically equivalent to
v(T) in [2]). A theorem due to Fan and Gottesman [4] sheds some light
on the problem and an affirmative answer is given in 4.

2. The Wallman H.cosed extensions.
Let X be a space, the amily of all closed subsets of X, and W(X)

the collection of all subfamilies of which possess the PFIP and are
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maximal in relative to this property. Two elements w, w. of W(X)
are said to be equivalent if both of them contain the closures of the
neighborhoods o the same point x in X. An equivalence class in W(X)
corresponding to a point x is called a fixed end and denoted by I(x)
an element in W(X) which dose not belong to any fixed end is called a
free end and denoted by . We denote by w(X) the collection of all
fixed and ree ends in X. For an open subset U o X let U*-{(x);
x e U}. We introduce the following topology for w(X), called Kattov
topology" the neighborhoods or fixed ends (x) are U* if x e U and or
free ends I are U*, where U is the interior of a closed set A belonging
to . The space w(X) with Kattov topology is H-closed and the sub-
space consisting of all I(x) is homeomorphic to X (also denoted by X).
Moreover, the H-closed w(X) has the following properties" X is dense
in w(X), X is open in w(X), and w(X)--X is discrete [7, p. 45].

Lemma 1. Every bounded real-valued continuous function f on
X ban be continuously extended over w(X).

Proof. Suppose that f cnnot be continuously extended at I e w(X).
Then there is an e >0 such that to the interior U each member A of
I there are b=supef(x) and a=imfe f(x) satisfying the con-
dition b-ae. It is clear that for two members A, A of I, b--a
e, sinceAA-A e I and b-a>_be. Let L be the least upper
bound of {a} and M the greatest lower bound of {b}. Then M--L>_ e.

P--{x;.f(x)>_M--e/3} and Q-{x; f(x)<_L+e/3} both intersect each
member of in sets containing non-vacuous open sets and therefore
belong to I. But P Q-C, contradicting to the definition of I.

Corollary. Every unbounded real-valued continuous function on
X can be continuously extended to an extended continuous function
over [see [11] for proof].

If C(w(X)) is the algebra of all bounded real-valued continuous
function on w(X), then w(X) can be decomposed into disjoint closed
subset S(x)- {x f(x) f(Xo) for all f e C(w(X)), x, Xo e w(X)}. A set of
S(x) is defined to be open if the union of the S(x)’s in the set is open in
w(X). Then the mapping p" xS(x) for x e w(X) is continuous and
{S(x) x e w(X)} from an H-closed space tg(X).

The following is a variant of the Stone-Cech theorem [8, p. 153].

Theorem 1. If X is a space separated by C(X), the algebra of all
bounded real-valued continuous functions on X, and f is acontinuous

function on X, to an H-closed space Y, separated by C(Y), then there
is a pseudo-continuous extension of f over [2(X).

Proof. Let F(X) be the family of all continuous functions on X to
the closed unit interval Q and Q(x) the product of the unit interval Q
taken F(X) times. Then Q(X) is compact and the evaluation map car-
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ries an element x of X into the element l(x) of Q(X) whose f-th coordi-
nate is f(x) for each f in F(X). By Theorem 5 in Part I and Lemma 1,
t0(X) is pseudo-homeomorphic to K(X) which is a closed subset of
and Y is pseudo-homeomorphic to K(Y) Qe(r). A function f* on F(Y)
to F(X) is induced by the given f if we define f*(a)-aof for each a in
F(Y). Define f** on Q(X)to Q(r) by letting f**(q)-qof* for each
q e Qy(X). Let i be the embedding map of X into t0(X) and let h and g
the evalution maps of t0(X) and Y into K(f2(X)) and K(Y) respectively
Then g-of** is the required pseudo-continuous extension of foh-ol-.

3. Complete regularity.
Fan and Gottesman [4] showed that a regular space with a normal

base is completely regular; Frink’s condition for complete regularity
of a T space is to posses a normal base for closed sets [6]. It will be
shown here that two concepts of normal base are equivalent for regular
spaces, that is, the existence of one kind of normal base implies the
existence of the other. We call a regular space paranormal if it has
Fan-Gottesman base and seminormal if there exists Frink normal base
for closed sets. A concept which is similar to but mor general than
normality, called pseudo-normality, is introduced to characterize com-
plete regularity. In fact, the four conditions (1) Complete regularity,
(2) Paranormality, (3)Seminormality and (4) Pseudo-normality are
equivalent for regular spaces.

Definition. A space is called pseudo-normal if for any two open
sets Q, Q with disjoint closures there are disjoint open U, U. such that
UQ, UQ.

Lemma 2. If Q, Q are two open subsets of a completely regular
space T with disjoint closures Q, Q, there is f e C(T) which takes the
alue 0 on Q and I on Q..

Proof. Following Aleksandrov’s notation [1], let a’T be the Haus-
dorf extension of T consisting of all completery regular ends. Then
a’T is compact [1, p. 411] and Q, Q have disjoint closures Q, Q. in q’T.

There is f e C(a’T) assuming the value 0 on ( and 1 on (. The rest-
riction on f on T is the required function.

Theorem 2. Let X be a regular space. The following statements
are equivalent"

(1) X is completely regular.
(2) X is pseudo-normal.
(3) X is paranormal.
Proof. (1) implies (2). It follows from Lemma 2"
(2) implies (3).
Let U, V be two open sets in X such that Uc V. Then U and X-- V

are two open sets with disjoint closures and there is a continuous func-
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tion f with f(U)=0 and f(x-U)-l. Let W={x e X; f(x)1}. It is
clear that Uc Wc Wc V. The open sets in X therefore from a normal
base in Fan-Gottesman sense.

(3) implies (1). It is a theorem due to Fan and Gottesman [4 ].
The ollowing is a consequence of Theorem 2 and Frink’s charac-

terization of complete regularity [6, p. 603, Theorem 1].
Corollary 1. Paranormality and seminormality are equivalent

for regular spaces.
Corollary 2. The Fan-Gottesman compactification X* of a com-

pletely regular space X with all open sets in X as a normal base coin-
cides with the Stone-Cech compactification fiX.

The proof of Lemma I can be used to show that each continuous
function on X can be extended over X*, and the corollary is proved.

4. On the Stone.Weierstrass approximation theorem.
In order to generalize the Stone-Weierstrass approximation

theorem to more general spaces, we adopt the definition" The theorem
holds in a apace X is the following conditions are satisfied.

(1) The ring C(X) of all continuous unctions (bounded or un-
bounded) on X separates any two points of an extension E(X) of the
space X, on which the functions in C(X) can be continuously extended.

(2) For any subring K(X) of C(X) containing constant unctions
and separating points of E(X) (a unction f in C(X) is said "separating
two points in E(X)" if its extended function f over E(X) sepates the
points), each continuous function f on X is the uniform limit of func-
tions in K(X) on each subset of X on which f is bounded.

It is known that the Stone-Weierstrass theorem holds or com-
pletely regular spaces with Stone-Cech compactifications as their exten-
sions [12]. We will show that the theorem is also true for Hausdorff
spaces with Wallman H-closed extensions.

Banaschewski [3] showed that each completely regular space X has
a non-compact extension, a subset of w(X), in which the Stone-Weier-
strass theorem holds in the sense in [2]. A question was raised by
Aleksandrov and Ponomarev" whether the Stone-Weierstrass theorem
holds in w(X) [2]. An affirmative answer isg iven in Theorem 5.

Theorem 3. Let R(X) be an algebra of real-valued continuous

functions on an H-closed space X containing constant functions and
separating the points. Then every continuous function f on X is the
limit of a uniformly convergent sequence of functions belonging to
R(X).

This theorem is an anologue of the one given by Stone [9] for com-
pact spaces, and the proof can be carried out almost without change.

Lemma 3. Let 1I be an open cover of an H-closed space X sepa-
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rated by C(X). Then there exist a finite pseudo subcover of U, ., U
of lI and n nonnegative real-valued continuous functions fi, ,f on
X such that (1) f vanish outside of U for i=1,..., n, and (2)f(x)
+... +f(x)=l for each x X.

Theorem 4. Let X be a space separated by C(X) and 9(X) the
Wallman H-closed extension of X as before. If So(X) is a self-ad]oint
subalgebra of the algebra K(X) of all continuous complex-valued func-
tions on X and is contained in a closed subalgebra S(X) of K(X), then
f e K(X) and f e on every set of constancy for So on [2(X) imply that
f belongs to S(X).

For notations and the proof of the theorem see [12, p. 931] ("pseudo
partition of unity" in Lemma 3 is used in lieu of "partition of unity").

Lemma 4. For each completely regular space X the continuous

functions on w(X) separate the points.

Proof. It ollows rom Lemma 2 that a completely regular space
X has a normal base in the Fan and Gottesman sense [4, p. 504] and
thus, can be embedded in a compact space X*. The ree ends in w(X)
are the maxmal binding families in X [see 4 for definition]. By Lemma
1 each bounded continuous function on X can be continuously extended
over X* is also continuous on w(X).

Theorem 5. For a completely regular space X, w(X)--t2(X) and
tle Stone-Weierstrass theorem holds in w(X).

The first part of the theorem follows from Lemma 4 and the second
part from Theorem 3.

5. Generalization of the Tietze extension theorem.
Lemma 5. If A and B are two disjoint H-closed subsets of a space

X and C(X) separates the points in A U B, then there is a continuous

function f on X such thatf(A)-O and f(B)= 1.

Theorem 5. If A is an H-closed subset of a space X and C(X)
separates the points in A, then each bounded continuous function f on
A to [-1, 1] can be continuously extended to f over X to [-1, 1].

Proof. Let C={x" f(x)<_-l/3,xeA} andD-{x" f)x)_l/3,xA}.
Then C and D are disjoint H-closed sets and by Lemma 5 there is f on
X to [--1/3, 1/3] such that f(x) is 1/3 on C and --1/3 on D. If(x)--f(x)l
_<2/3 or all x in A.

Remark. The condition that C(X) separates the points in Theorems
3, 4, 6 is assumed or simplicity and more general results with slight
modifications still held without such restriction.

6. Terminology.
The characterization of pseudo-compactness as the existence of a

cluster point for each sequence of open sets was announced about the
same time by (1) K. Iseki and S. Kasahara, Proc. Japan Acad., 33
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(1957), (2) S. Mardesic and Z. P. Papic., Glasnik Mat.-Fiz. i Astr., 10
(1955), (3) J. D. McKnight, R.. W. Bagley nd E. H. Connell, Bull.
Amer. Math. Soc., 63(1) (1957), apparently under the influence of
Hewitt’s paper (Trans. Amer. Math. Soc., 64 (1948)). The existence of

cluster point for each sequence of open sets nd of pseudo finite sub-
cover for each countable open cover reveals the similar between pseudo-
compactness and countable compactness. On the other hand, the cluster
point theorem for each net of open sets, the existence of a pseudo finite
subcover for each open cover, and other properties of H-closed spaces
(see Theorems 1, 3, 4 in Part I) are just the anologues of the basic
theorems for compact spaces. Even though pseudo-compactness has
become a standard term, we feel strongly that the appropriate name
for pseudo-compactness is "pseudo countable compactness" while H-
closed spaces should be called "pseudo compact".
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