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Introduction. In this note we compute the additive structure of
G(Z) and obtain that for n>0,

12-torsion for n odd,(Z)
[free+2-torsion for n even,

where the 2-torsion part consists of elements of order two.
We also compute the generators of (Z) for n<7, and study its

connection with the 9-module structure of ).(Z) which we have deter-
mined in [5].

1. The additive structure of lg(Z). We consider all (M, T) of

Z-aetions whieh form the Zp-bordism group (C)(Zp). First we shall
need the exact sequence

0
which we already have in [5, Cororally 1.1]. Here 9_(Z) is the reduced,
fixed point ree, Z-bordism group, and n(Z,)-->o 9_(B(U(k)

U(k,_l))), k--kl + + k(p_)/2. Moreover i. is defined by i.[M]
[M Z, 1 a] e )(Z) where a is the map of period p which inter-

changes elements of Z; is defined by sending [M, T] e O(Z) to the
normal bundle over the fixed point set of T, >0 [-Fr e n(Z),
where -F- is the complex k-dimensional normal bundle over the
union F- of the (n--2k)-dimensional components o the fixed point set
of T, and 3 is defined by sending , [V-, g]-- , [$-V--] e (Zp)
to the sphere bundles , [S($), p]e _(Zp) where p-exp (2ri/p) and-V-2 is the complex k-plane bundle classified by the map g" V-2
B(U(k) ...

We also need several facts provided by Conner and Floyd in [3]"
For X B(U

[3, 15.2].
For a/2-base {[S-, p]} of O.(Z), [3, 34.3], [Su-, p] has order p+

where a(2p--2) 2i-1(a+ 1)(2p--2), [3, 36.1].
And if 2i--1--a(2p--2)+ 1, then p[S-1, p]--b[S, p].[CP(p--1)]

where b0 (mod p), [3, 36.2].

*) During the preparation o this paper, the author was a Fellow o the
United Board or Christian Higher Education in Asia.
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For n>O, tg(Z)=0, [3, 34.2].
We may now show the following
Proposition. For n O,

I2-torsion for n odd,(n(Zp)
Lfree + 2-torsion for n even,

where the 2-torsion part consists of elements of order two.
Proof. Let the homomorphism ]." 9n--*(n(Z) be defined by ].[M]

=[M, 1] e (n(Z). Then in the the following diagram

9+ 2-torsion 0

i,Oo9n+O5n+(Z)oE 9n+_(B(U(k)... U(k,_l/)))O9n(Z)O,

2-torsion H,(B(U(k) U(k_l/)) o)2-torsion,
where k-k+ + k(_,/, we see that Gn+(Z) 2-torsion. The 2-tor-
sion consists of elements of order two. For i we assume that Gn+(Z)
has elements of order 4, then for some [M+] e 9+ there is [Nn+l, T]
e Gn+(Z) such that i.[M]=2[N, T]. But in case it occurs, we may
show that [M] must vanish. To see this, we define " Gn+(Z)9n+
by e[M,T]--[M] such that el.--1. Then ei.[M]=e[MZ,Ia]--[M
Z]--p[M]. On the other hand, ei.[M] e(2[N, T]) 2e[N, T]-- 2[N]

=0. We thus have p[M]=0, and so [M]--0.
By the same arguments we obtain n(Z)ree+ 2-torsion, where

the 2-torsion part also consists of order two. The assertion thus follows.
2. The generators of n(Z).
The explicit results of Thom groups for nll are as ollows.

90=Z, 9--9=9=0, 9--Z, 9--Z, 9--9--0,
9s Z+ Z, 9--Z+Z, 90--Z, 9--Z.

Let P(m,n)=SCP(n)/ be the Dold manifold, where (x, z)
(--x, 5) or x e S and z e CP(n) with 5 its conjugate. P(m, n) is orien-
table if and only if mn (mod 2) or m-0. The generators of 9 for
n4 11 are"

9t" [CP(2)], 9" [P(1, 2)], 9s" [CP(2) CP(2)], [CP(4)],
9" [P(1, 4)], [CP(2) P(1, 2)], 90" [P(1, 2) P(1, 2)],
9" [P(3, 4)], [1, Theorem 2].

We compute the additive structure of G(Z) for n11 and obtain
the explicit results in the following.
50(Z)-Z+ Z, 5(Z)- 0, 5(Z)-Z, 5(Z)- 0, 5(Z) Z+Z+Z+ Z,
5(Z)-Z+Z, 5(Z)-Z+Z+Z+ Z, 5(Z)-Z, 5(Z)-Z+... + Z,

11

5(Z)-Z+. +Z, o(Z)-(Z+. +Z)+Z+Z,

=Z+... +Z.
7
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The generators of O(Z) for n<7 are as follows.
(0) It is easy to see that Oo(Z)=j.tg0+ i.90 where ]. and i. are

defined by ].[M]-- [M, 1] and i.[M]-- [M x Z, 1 X a] for [M] e/20. The
map a is a map of period 3 which interchanges elements of Z.

(1)
(2) (Z) is generated by [H, T] where H is an oriented differenti-

able 2-manifold with the fixed point set F consisting of three points.
Such a manifold can be constructed as follows. Define a curve H CP(2)
by H= ([z0, z, z]z+ z+ z-0} with an action T given by T([zo, z, z])
=[z0, z, pz], p-exp (2i/3). Then
0]}, [2, p. 7]. This manifold H is a non-singular elliptic curve. In the
following diagram

-0

0
i.
5(z)(z) 9(z) o

o z z 0(BU()) {IS, p]} Z.
We see that [H, ], F {3 points} [,F] 3[S, p] 0.

(3) 5(Z)- 0.
(4) (Z) is generated by [CP(2), 1], [CP(2) Z, 1 a], [CP(2), T0]

and [CP(2), T] where T0([z0, z, z])- [pZo, z, z] and T([z0, z, z])- [pZo,
pz, z] for [z0, z, z] e CP(2). This may be seen in the following diagram.

5(Z)(Z) 9(Z) 0

Z. i) Z 9,(BU(O))Z 0 {[S,p]}
+ +Z ,0 Z3
+ 9(BU(1)) Z

iii) Z + 0
+ 0(BU(2))

iv) Z

i) [CP(2)][CP(2) 1],.,[0CP(2)]

ii) [CP(2)]
i.

[CP(2) Z3, 1 a] .0. Here notice that
[CP(2) Z, 1 a] is fixed point free.

iii) [CP(2), T0], Fr-CP(1)(a point}
-IS3, p] + IS3, p]=0, where e4, is the trivial 4-plane bundle over
the point ,.

iv) [CP(2), T], Fr,-(3 points} 3[e4-.] 3[S, p]-0.
(5) (Z) is generated by [P(1, 2), 1] and [P(1, 2) Z, 1 a].
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In the diagram

i. a
0 , ,G(Z) (Z) (Z) ,0,

Z. t2(BU(0)) Z2 0

[P(1, 2)], * ,[P(1, 2), 1] .[voP(1,2)]
a

,0.

[P(1, 2)].. * [P(1, 2) z, 1 a] = :0.
(6) Go(Z) is generated by [CP(3), To To([Zo, zx, z2, z3]) [pZo, zx, z2, z]],

[M, TIFf-- CP(2) U {3 points}], [N, T’iFr,= CP(1) U {2 points}] and
[H, T]. [CP(2), T] where [H, T] is the 2-manifold stated in (2) and T([z0,
z, z2])= [pZo, p2z, z2] for [Zo, z, z2] e CP(2).

For 9=0, (Z)={[S, p]} zZ and

(Z3) 9(BU(1)) H(BU(1) o) +Ho(BU(1) ;g) Z+Z
+

92(BU(2))zZ [Cases" i), ii), iii) and iv)]
+

o(BU(3))Z
We have

)
ii)

i)

ii)

iii)

[CP(3), To], Fro OP(2) U {a point} .,[v OP(2)] + [s -..] ,0.

There is [M, T] such that Fr= CP(2)U {3 points} with trivial nor-

mal bundle. - [s-.CP(2)] + 3[s-**] 0. For [e-CP(2)]

[CP(2)S, 1 p]-[CP(2)]. [S, p] 3[S, p].
There is [N, T’] such that Fr,=CP(1)U {2 points} with v[N, T’]
[i*t,3sCP(1)] + 2[s-**] where i*7@s is obtained in the

following"

i*/’s ,y.

CP(1) ,BU(1) ,BU(2).
For consider [CP(2), To], To([Zo, z, z.])= [pZo, z, z],Then 3v[N, T’]=0.

we then have 3I.[CP(2), To]=[S,p]. [CP(2)]=3[S, p] where I.:
9_(BU(k))tg_2(BU(k+I)) is a homomorphism induced by the

homomorphism U(k)---,U(k+l)sending the matrix or into ( ), [3,
38.6]. But 3I.[CP(2), To]=3{[v32CP(1)] + [e--**]} 3[v@e--,CP(1)]
+[S, p] which is 3[S, p]. Hence 3[v3e2CP(1)]=2[S, p] and v is
conjugate to the bundle i*,.

iv) [H, T]. [CP(2), T] [H CP(2), T T], Fr,- {3 pts.} {3 pts.}

9 [e-**] 9[S5, p]=O.
(7) O.(Z) is generated by [V, T Fr=P(1, 2) with trivial normal
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bundle].
Since /2 2(Z) 0 and !g(Z) t(BU(1)) Ho(B U(1) 2) Z,

[Y,T] Fr P(1,2) " [e__p(1, 2)] [P(1, 2) S, 1 p]-0. There is
then (W7, T’), fixed point free, with 3(W, T’)--(P(1, 2) S, 1 p). We
thus see that the generator [V, T] is o the orm [(P(1, 2)D) W,
1 p U T’] where the two copies of P(1, 2) S are identified.. The .module structure of O,(Z). In [5, 5] we have deter-
mined the 9-module structure of G.(Z). The result is as follows"

O,(z) 9.Z .P(a’--.a)
0 lo,-..,jO

as free -module, where . and F*o(a...a.O are free -modules generated by and F(a[.. .) respectively which we shall
explane in the following. In he exae sequence

0 >9, )O,(Z) ,(Z)9,(Z) 0,
there are closed oriented manifolds M, k= 1, 2, ., and ,(Z)

rM10-such that fl-30+ +[MS]0-+..., [5, 5] where 00--[e,]
and that 3(fl)-0 in ,(Z), [3, 46.1]. The generator Z is taken to be
such an element of ,(Z)that v(Z)--fl for each k 1 and 0-[Z, a].

Let 9,(S) be the bordism group of ree S-action and let ,(S)
and ,(S) be the bordism groups of semi-free S-actions which are just
ormed by replacing Z-actions by S-actions in ,(Z),,(Z) and ,(Z)
respectively. We shall use the -module structure of 0,($9 in that of
,(Z), so consider now the diagram

0 >,(S) ,(S)9,($9 0

i, 0
0 9..G(Z) .(Z) 9.(Z) 0

where 2 is the homomorphism defined by sending an S-action [M, v] to
a Z-action [M, T]; y and 3 are the homomorphisms quite analogous to
and 3. The first sequence is exact and ,(S)-.(Z), [4]. For any

element [M, r] e G.(Sg, consider (M D, 1 r0) and (M D, v r0)
where v0 is the usual S-action on D. Then 3(M D, 1 v0)=(M S,
1 v0) and 3(M D, v Vo)-(M S, v Vo) are equivariantly diffeomor-
phic by an equivariant diffeomorphism M SM S defined by
(x, t) (t(x), t). Form (M +, r’) from (M D, 1 v0) (--M D, v v0)
by identifying (M S, 1 v0) and (M S, v v0) via . The 9-map F"
G(S)oG+(S) is to be defined by F[M, r] [M+, r’], and a
=[CP(i+l),v], v(t,[Zo, Z, ...,z+])-[tZo, Z, ...,Z+l], teS. We then
have

,($9 E 9. $o(a,...
as free 9-module, [4]. Here (a)--0--0+ where 0-[CP(i)],
CP(i) is the complex line bundle over CP(i) induced from the universal
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bundle over BU(1) by the inclusion i: CP(i)BU(1). We shall express
(C)n(Z3) for n<7 in the notations given above. With this expression, we
may have a clearer sight of the 9-module structure of (C),(Z3) and its
connection with that studied in 2.

(0)
(2)
(4)
(5)
(6)
(7)

Oo(Z3) 0" 1 +/20./u0. (1) 01(Z3) O.
O.(Z3) . o"/21. (3) O(Z) O.
O(Z) . 1 +.o+ o" a+ o".
O(Z) . 1 +. o.
O(Z) o" a+ o" + o" F(a) + .
07(Z3) 5" 1"
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