105. A Theorem Equivalent to the Brouwer Fixed Point Theorem

By Zen'ichirô Koshiba Department of Mathematics, Shinshû University, Matsumoto (Comm. by Kinjirô Kunugi, M. J. A., May 12, 1971)

§0. Introduction.

In this note we shall give a theorem which is equivalent to the Brouwer fixed point theorem. Such a theorem, we shall call here Theorem A, can be applied to the foundation of analysis concerning several independent variables ([1] Lemma F).

Notations used here are the same as those in [1]. Let K be the n-dimensional closed unit ball, and K_{δ} be the closed ball of radius δ with center 0. Further let $(S)_{-\delta}$ be the maximal closed set whose δ -neighborhood is contained in the set S. The symbol $\|\cdot\|$ denotes the ordinary euclidean norm. The Brouwer fixed point theorem for a continuous mapping on K into itself is referred to as Theorem B.

Theorem A. Let f(x) be a continuous mapping defined on K into R^n of the form

$$f(x) = Lx + N(x)$$
,

where L is non-degenerated affine mapping and $||N(x)|| \le \delta$. Then $f(K) \supset (LK)_{-\delta}$.

For sufficiently small δ the set $(LK)_{-\delta}$ is not empty, and therefore such a continuous f(x) in Theorem A may be considered as having the dimension-preserving property in some sense. Translating variables, C^1 -mapping with non-vanishing Jacobian belongs to this class in local and Theorem A furnishes a lower bound of the extent of range f(Q) for a small vicinity Q.

Theorem A increases in generality by certain modifications, however, we shall be interested in the fact that Theorem A which may be seen intuitively is equivalent to the Brouwer fixed point theorem.

§1. Theorem B implies Theorem A.

Proof. Let y be arbitrarily chosen from $(LK)_{-\delta}$ and fixed. Consider the mapping $x \to L^{-1}(y - N(x))$. Since y - N(x) belongs to LK, this mapping is continuous on K into itself. Therefore by Theorem B there exists a fixed point $x \in K$ such that $L^{-1}(y - N(x)) = x$ i.e. y = Lx + N(x). q.e.d.

§2. Theorem A implies Theorem B.

Proof. Suppose there exists a continuous mapping f(x) on K into itself with no fixed point. Then there exists a continuous mapping

 $f_1(x)$ such that $||f_1(x)||=1$ for all $x \in K$ and every boundary point remains fixed. Such a mapping $f_1(x)$ is obtained by solving $\lambda(\geq 0)$ from the following quadratic equation $||(1+\lambda)x-\lambda f(x)||^2=1$.

Consider the mapping

$$F(t, x) = (1-t)x + tf_1(x)$$

for real parameter t(0 < t < 1), where for a fixed t, (1-t)x is the linear term Lx and $tf_1(x)$ is the non-linear term N(x) respectively in Theorem A.

Evidently $||tf_i(x)|| = t$, and we get

$$F(t,K)\supset ((1-t)K)_{-t}=K_{1-2t}.$$

If 0 < t < 1/2, then K_{1-2t} is not empty and $F(t, K) \ni \mathbf{0}$. By tending t to $\uparrow 1/2$, we get $F(1/2, K) \ni \mathbf{0}$ which means the existence of a point p such that $(1/2)p + (1/2)f_1(p) = \mathbf{0}$ i.e. $p = -f_1(p)$.

This last equation is the contradiction which says that p is boundary point and at the same time is removed by f_1 . q.e.d.

Reference

[1] Z. Koshiba: An alternative method of foundation in the infinitesimal analysis of several independent variables. Journal of Shinshû Univ., Faculty of Science, 5(2), 109-121 (1970).