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1 If X is a semigroup, then the product of non-empty subsets of
X can be defined in a natural way to produce a semigroup, which is
called the power semigroup of X ([4]), and is denoted by %(X). It is
obvious that semigroups X and Y are isomorphic, then the power semi-
groups %(X) and %(Y) are isomorphic. This note is devoted to the
converse question" if %(X) and %(Y) are isomorphic, must X and Y be
isomorphic ? We will answer this question for commutative semigroups
whose ideals are all principal ideals. In the case for finite groups and
chains, see [4].

2. By a partially ordered semigroup we mean a set X satisfying
(P1) X is a semigroup;
(P2) X is a partially ordered set under a relation _<_
(P3) a<__b implies ac<=bc and ca<__cb for all c e X ([1], p. 153).
Let X and Y be partially ordered semigroups. By an o-isomor-

phism of X onto Y we mean a one-to-one mapping of X onto Y such
that

(01) (ab)-(a)(b) for all a, b e X;
(02) a_<_ b in X if and only if (a)_<_t(b) in Y.
3. Let X be a semigroup and %(X) the set of all non-empty sub-

sets of X. A binary operation is defined in %(X) as follows" For A,
B e %(X)

AB (ab a e A, b e B}.
Then it is well-known and is easily seen that %(X) is a semigroup. This
semigroup %(X) is called the power semigroup of X.

We define a relation =< on %(X) as follows; For A, B e %(X),
A __<_B if and only if A B.

Then, as is well-known ([2], p. 132), %(X) is a partially ordered set
under this relation <= satisfying the condition (P3), that is, %(X) is a
partially ordered semigroup.

Let (X) be the set of all ideals of a semigroup X and (X) the set
of all principal ideals of X. Then clearly (X) is a subsemigroup of
%(X).

4. Proposition 1. Let be an o-isomorphism of %(X) onto %(Y)
and * the restriction of on (X). Then * maps (X) onto (Y).
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Therefore * is an isomorphism of (X) onto (Y).
Proof. Since is an onto mapping, or Y e %(Y) there exists

an element B e %(X) such that
(B) Y.

Let A be any element of %(X). Then, since is an o-isomorphism of
%(X) onto %(Y), we have

(A)Y O(A)(B) (AB) (A)
and

Y(A) (B)(A) (BA) (A).
Thus we obtain that

Similarly, we have

and so

O((X))G(Y).

f-’((Y))___(X),

(Y) f)(f-((Y))) c_G_ f)((X)).
Therefore we obtain that

((X)) (Y),
which completes the proof of the proposition.. We denote by [x] the principal ideal of a semigroup X generated
by x of X. The following result is esily seen.

Proposition 2. Let X be a commutative semigroup. Then
[a][b]=[ab]

for every a, b e X.
6. A semigroup X is called an IO-semigroup if a e [b] and b e [a]

imply a--b. The definition and some properties concerning/O-semi-
groups are given by G. Szsz [3].

Theorem 3. Let X and Y be commutative IO-semigroups such
that (X)=(X) and (Y)=(Y). /f %(X) and %(Y) are o-isomorphic,
then X and Y are isomorphic.

Proof. Suppose that is an o-isomorphism of %(X) onto %(Y)
and * is the restriction of on (X). Consider the following diagram.

x ,(x)__G_(x)

where
x*(a) [a] for every a e X,
y*(b)=[b] Yor every b e Y.

Then it follows from Proposition 2 and the definition of the/O-semi-

group that the mappings x* and y* are isomorphisms of X onto (X)
and of Y onto (Y), respectively.

Moreover, since * is an isomorphism of (X) onto (Y) by Propo-
sition 1, we can prove that
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h= y*-o{*ox*
gives an isomorphism of X onto Y. This completes the proof of the
theorem.

The ollowing corollary is the immediate consequence of Theorem 3.
Corollary 4. Let X and Y be commutative IO-semigroups such

that (X)=(X)and (Y)=(Y). If (X) and (Y) are isomorphic,
then X and Y are isomorphic.
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