123. On the Existence of Solutions for System of Linear Partial Differential Equations with Constant Coefficients

By Yoshio Shimada
Sophia University

(Comm. by Kinjirô Kunugi, M. J. A., June 12, 1971)

This paper is on the extension of a theorem by J. F. Treves (Lectures on linear partial differential equations with constant coefficients) for single linear partial differential equation to the case of system, which owes a great deal to the suggestions of Prof. Mitio Nagumo.

Let \mathfrak{U} be a non-commutative algebra with unit over the complex numbers C, and let $[A, B]=A B-B A$ for all $A, B \in \mathfrak{A}$. Let A_{1}, $\cdots, A_{n}, B_{1}, \cdots, B_{n}$ be $2 n$ elements of the algebra \mathfrak{A}, satisfying the following commutation relations:
(1) $\left[A_{j}, A_{k}\right]=\left[B_{j}, B_{k}\right]=0$ for $1 \leq j, k \leq n .\left[A_{j}, B_{k}\right]=0$ for $j \neq k$.
(2) $\left[A_{j}, B_{j}\right]=I$ (unit element of \mathfrak{H}) for $1 \leq j \leq n$.

Let $P(X)=P\left(X_{1}, \cdots, X_{n}\right)$ be a polynomial with complex coefficients, and p be a multi-index $\left(p_{1}, \cdots, p_{n}\right)$ of n integers ≥ 0, and let

$$
P^{(p)}(X)=\left(\frac{\partial}{\partial X_{1}}\right)^{p_{1}} \cdots\left(\frac{\partial}{\partial X_{n}}\right)^{p_{n}} P\left(X_{1}, \cdots, X_{n}\right)
$$

Lemma 1 (by lecture note of Treves). Let $P(X), Q(X)$ be the polynomials in n letters with complex coefficients, then

$$
Q(B) P(A)=\sum_{p} \frac{(-1)^{|p|}}{p!} P^{(p)}(A) Q^{(p)}(B),
$$

where $A=\left(A_{1}, \cdots, A_{n}\right), B=\left(B_{1}, \cdots, B_{n}\right)$ satisfying the above commutation relations (1), (2), and $|p|=p_{1}+\cdots+p_{n}, p!=p_{1}!\cdots p_{n}!$.

Lemma 2. Let $\boldsymbol{P}(X), \boldsymbol{Q}(X)$ be arbitrary square matrix of (m, m)type such that its elements are polynomials in n letters with complex coefficients, then

$$
{ }^{t}(\boldsymbol{Q}(B) \boldsymbol{P}(A))=\sum_{p} \frac{(-1)^{|p|}}{p!}{ }^{t} \boldsymbol{P}^{(p)}(A)^{t} \boldsymbol{Q}^{(p)}(B)
$$

Proof. This lemma follows immediately by substituting the equality in Lemma 1.

Now, assume that \mathfrak{A} is an algebra of linear mappings $\mathscr{D} \rightarrow \mathscr{D}$, where \mathscr{D} is the linear space of infinitely differentiable complex valued functions on \boldsymbol{R}^{n} with compact support. Let $\mathcal{L}_{2}=L_{2} \times \cdots \times L_{2}$, and inner product of \mathcal{L}_{2} is defined by $(f, \boldsymbol{g})_{\mathcal{L}_{2}}=\sum_{i=1}^{m}\left(f_{i}, g_{i}\right)_{L_{2}}$ for $\boldsymbol{f}=\left(f_{1}, \cdots, f_{m}\right)$,
$\boldsymbol{g}=\left(g_{1}, \cdots, g_{m}\right)$. Let $A^{*}=\left(A_{1}^{*}, \cdots, A_{n}^{*}\right), B=-A^{*}$, where A_{j}^{*} is the adjoint of A_{j} for the inner product of L_{2} on \mathscr{D}. Further, assume that the commutation relations (1), (2) hold.

Put

$$
\boldsymbol{Q}(X)=^{t} \overline{\boldsymbol{P}}(-X)=\left(\bar{P}_{i j}(-X) \begin{array}{c}
i \rightarrow 1, \cdots, m \\
i \downarrow 1, \cdots, m
\end{array}\right)
$$

where \bar{P} is the polynomial with replaced coefficients in P by its complex conjugate. Since $\boldsymbol{P}(A)^{*}=^{t} \overline{\boldsymbol{P}}\left(A^{*}\right), \boldsymbol{Q}(B)=\boldsymbol{P}(A)^{*}$. On the other hand, since $\boldsymbol{Q}^{(p)}(X)=(-1)^{|p| t} \overline{\boldsymbol{P}^{(p)}}(-X), \boldsymbol{Q}^{(p)}(B)=(-1)^{|p|} \boldsymbol{P}^{(p)}(A)^{*}$.
Hence, by Lemma 2,

$$
{ }^{t}\left(\boldsymbol{P}(A)^{*} \boldsymbol{P}(A)\right)=\sum_{p} \frac{1}{p!} \boldsymbol{P}^{(p)}(A)^{t} \boldsymbol{P}^{(p)}(A)^{*}
$$

Since

$$
\left.{ }^{t}\left(\boldsymbol{P}(A)^{*} \boldsymbol{P}(A)\right) \varphi, \varphi\right)_{\mathcal{L}_{2}}=\sum_{p} \frac{1}{p!}\left(^{t} \boldsymbol{P}^{(p)}(A)^{t} \boldsymbol{P}^{(p)}(A)^{*} \varphi, \varphi\right)_{\mathcal{L}_{2}}
$$

for every $\varphi \in(\mathscr{D})^{m}=\mathscr{D} \times \cdots \times \mathscr{D}$,

$$
\left(\overline{\boldsymbol{P}}\left(A^{*}\right) \varphi, \overline{\boldsymbol{P}}\left(A^{*}\right) \varphi\right)_{\mathcal{L}_{2}}=\sum_{p} \frac{1}{p!}\left(^{t} \boldsymbol{P}^{(p)}(A)^{*} \varphi,{ }^{t} \boldsymbol{P}^{(p)}(A)^{*} \varphi\right)_{\mathcal{L}_{2}}
$$

Replacing A^{*} by A in the above equality, and since \boldsymbol{P} is an arbitrary square matrix, replacing $\overline{\boldsymbol{P}}$ by \boldsymbol{P},

$$
\begin{aligned}
(\boldsymbol{P}(A) \varphi, \boldsymbol{P}(A) \varphi)_{\mathcal{L}_{2}} & =\sum_{p} \frac{1}{p!}\left({ }^{t} \overline{\boldsymbol{P}}^{(p)}\left(A^{*}\right)^{*} \varphi,,^{t} \overline{\boldsymbol{P}}^{(p)}\left(A^{*}\right)^{*} \varphi\right)_{\mathcal{L}_{2}} \\
& =\sum_{p} \frac{1}{p!}\left(\boldsymbol{P}^{(p)}(A) \varphi, \boldsymbol{P}^{(p)}(A) \varphi\right)_{\mathcal{L}_{2}}
\end{aligned}
$$

namely,

$$
\|\boldsymbol{P}(A) \varphi\|_{\mathcal{L}_{2}}^{2}=\sum_{p} \frac{1}{p!}\left\|\boldsymbol{P}^{(p)}(A) \varphi\right\|_{\mathcal{L}_{2}}^{2}
$$

for every ${ }^{\forall} \varphi \in(\mathscr{D})^{m}$.
Therefore the following lemma holds immediately from the above equality.

Lemma 3. For every $\varphi \in(\mathscr{D})^{m}$, there exists a constant C such that $\left\|\boldsymbol{P}^{(p)}(A) \varphi\right\|_{\mathcal{L}_{2}}^{3} \leqq C\|\boldsymbol{P}(A) \varphi\|_{\mathcal{L}_{2}}^{2}$.

Let $R^{n} \ni X=\left(X_{1}, \cdots, X_{n}\right), D_{j}=\frac{\partial}{\partial X_{j}}(1 \leqq j \leqq n)$ and let t_{1}, \cdots, t_{n} be real numbers, all different from zero. Put $E(t, x)=\exp \frac{1}{2}\left(t_{1}^{2} x_{1}^{2}+\cdots\right.$ $\left.+t_{n}^{2} x_{n}^{2}\right)$. Let $m \times m$ matrix $\boldsymbol{E}(t, x)=\left(\begin{array}{lll}E(t, x) & & \\ & \ddots & \\ & & \\ & & \\ & & \\ & \\ & \\ \hline\end{array}\right)$, then, for an arbitrary square matrix $\boldsymbol{P}(X)$ such that its elements are polynomials, the following theorem holds from Lemma 3.

Theorem 1. There exists a constant C such that

$$
\left\|\boldsymbol{E}(t, x) \boldsymbol{P}^{(p)}(D) \varphi\right\|_{\mathcal{L}_{2}}^{2} \leqq C^{\prime}\|\boldsymbol{E}(t, x) \boldsymbol{P}(D) \varphi\|_{\mathcal{L}_{2}}^{2}
$$

for every $\varphi \in(\mathscr{D})^{m}$.
Proof. Let $A_{j}=\frac{1}{\sqrt{2}}\left(t_{j}^{-1} D_{j}-t_{j} X_{j}\right)$, then the adjoint of A_{j} is A_{j}^{*} $=-\frac{1}{\sqrt{2}}\left(t_{j}^{-1} D_{j}+t_{j} X_{j}\right)$. Put $B_{j}=-A_{j}^{*}$. The commutation relations (1), (2) are satisfied for $A=\left(A_{1}, \cdots, A_{n}\right), B=\left(B_{1}, \cdots, B_{n}\right)$. Let $\boldsymbol{P}_{t}(X)$ $=\boldsymbol{P}\left(\sqrt{2} t_{1} X_{1}, \cdots, \sqrt{2} t_{n} X_{n}\right)$, then $\boldsymbol{P}_{t}^{(p)}(X)=\sqrt{2}{ }^{|p|} t^{p} \boldsymbol{P}^{(p)}\left(\sqrt{2} t_{1} X_{1}, \cdots\right.$, $\sqrt{2} t_{n} X_{n}$). By substituting A_{j} for $X_{j}, \boldsymbol{P}_{t}^{(p)}(A)=\sqrt{2^{|p|}} t^{p} \boldsymbol{P}^{(p)}\left(D-t^{2} X\right)$, where $D-t^{2} X=\left(D_{1}-t_{1}^{2} X_{1}, \cdots, D_{n}-t_{n}^{2} X_{n}\right)$. By applying Lemma 3 to this square matrix $\boldsymbol{P}_{t}(A)$,

$$
\begin{equation*}
2^{|p|} t^{2 p}\left\|\boldsymbol{P}^{(p)}\left(D-t^{2} X\right) \varphi\right\|_{\mathcal{L}_{2}}^{2} \leqq C\left\|\boldsymbol{P}\left(D-t^{2} X\right) \varphi\right\|_{\mathcal{L}_{2}}^{2} \tag{1}
\end{equation*}
$$

On the other hand, for every $\varphi \in(\mathscr{D})^{m}$,

$$
\begin{aligned}
& \boldsymbol{P}\left(D-t^{2} X\right) \boldsymbol{E}(t, X) \varphi(X)=\left(\sum_{j=1}^{m} P_{i j}\left(D-t^{2} X\right) E(t, X) \varphi_{j}(X) \quad i \downarrow 1, \cdots, m\right) \\
& =\left(\sum_{j=1}^{m} E(t, X) P_{i j}(D) \varphi_{j}(X) \quad i \downarrow 1, \cdots, m\right)=\boldsymbol{E}(t, X) \boldsymbol{P}(D) \varphi(X) .
\end{aligned}
$$

Hence, by applying above estimate to $E(t, X) \varphi(X)$,

$$
\begin{equation*}
2^{|p|} t^{2 p}\left\|\boldsymbol{E}(t, X) \boldsymbol{P}^{(p)}(D) \varphi\right\|_{\mathcal{L}_{2}}^{2} \leqq C\|\boldsymbol{E}(t, X) \boldsymbol{P}(D) \varphi\|_{\mathcal{L}_{2}}^{2} \tag{q.e.d.}
\end{equation*}
$$

for every $\varphi \in(\mathscr{D})^{m}$.
This estimate is essential in the next theorem.
Let $\mathscr{H}_{+}(t)$ be the linear space of m-tuples measurable functions $f(X)$ on R^{n} such that $\boldsymbol{E}(t, X) f(X) \in \mathcal{L}_{2}$, which is provided with the inner product, and the norm,

$$
(f, \boldsymbol{g})_{+, t}=\sum_{i=1}^{m} \int E^{2}(t, x) f_{i}(x) \overline{g_{i}(x)} d X, \quad\|\boldsymbol{f}\|_{+, t}=\sqrt{(\boldsymbol{f}, \boldsymbol{f})_{+, t}} .
$$

Then $\mathscr{H}_{+t}(t)$ is a Hilbert space. Similarly, the Hilbert space $\mathscr{H}_{-}(t)$ is defined by the linear space of m-tuples measurable functions $f(X)$ on R^{n} such that $\boldsymbol{E}^{-1}(t, X) f(X) \in \mathcal{L}_{2}$, with the inner product

$$
(\boldsymbol{f}, \boldsymbol{g})_{-, t}=\sum_{i=1}^{m} \int E^{-2}(t, x) f_{i}(x) \overline{g_{i}(x)} d X
$$

The bilinear form $\langle\boldsymbol{f}, \boldsymbol{g}\rangle$ on $\mathscr{H}_{+}(t) \times \mathcal{H}_{-}(t)$ is defined by the following: $\langle\boldsymbol{f}, \boldsymbol{g}\rangle=\sum_{i=1}^{m} \int f_{i}(x) g_{i}(x) d X$.
Then, $\mathcal{H}_{-}(t)$ is the dual space of $\mathscr{H}_{+}(t)$.
Estimate in Theorem 1 can be given by $\mathscr{H}_{+}(t)$-norm $\left\|\boldsymbol{P}^{(p)}(D) \varphi\right\|_{+, t}^{2} \leqq C\|\boldsymbol{P}(D) \varphi\|_{+, t}^{2} \quad$ for every $\varphi \in(\mathscr{D})^{m}$.
Henceforth, let $\boldsymbol{P}(X)$ be the square matrix

$$
\left(\begin{array}{ll}
P_{i j} & i \downarrow 1, \cdots, m \\
& j \rightarrow 1, \cdots, m
\end{array}\right)
$$

satisfying the following conditions:
"There exists a multi-index r such that $\boldsymbol{P}^{(r)}(X)=\boldsymbol{C}=$ constant matrix and C has an inverse matrix C^{-1}."
Let this condition be named "condition (C)".
Hence, for this multi-index r.

$$
\|\varphi\|_{+, t}^{2} \leqq C\|\boldsymbol{P}(D) \varphi\|_{+, t}^{2} \quad \text { for every } \varphi \in(\mathscr{D})^{m}
$$ $\boldsymbol{P}(D)(\mathscr{D})^{m}=\left\{\boldsymbol{P}(D) \varphi ; \varphi \in(\mathscr{D})^{m}\right\}$ is a linear subspace of $\mathscr{H}_{+}(t)$. As $\boldsymbol{P}(D)(\mathscr{D})^{m}$ is provided with the $\mathscr{H}_{+}(t)$-norm, linear mapping $\boldsymbol{P}(D) \varphi \rightarrow \varphi$ is continuous from $\boldsymbol{P}(D)(\mathscr{D})^{m}$ into $\mathscr{H}_{+}(t)$ by (3). Hence, by continuity, this mapping can be extended to the closure of $\boldsymbol{P}(D)(\mathscr{D})^{m}$ in $\mathscr{K}_{+}(t)$, and by zero to the orthogonal complement of the closure of $\boldsymbol{P}(D)(\mathscr{D})^{m}$ in $\mathcal{H}_{+}(t)$.

Now, let G be the continuous linear mapping $\mathcal{H}_{+}(t) \rightarrow \mathcal{H}_{+}(t)$ defined above, and let G^{*} be a dual operator of G.

$$
\begin{aligned}
& \mathcal{H}_{-}(t) \ni{ }^{\forall} \boldsymbol{f}, \quad \text { for every } \varphi \in(\mathscr{D})^{m}, \\
& \langle\boldsymbol{f}, \varphi\rangle=\langle\boldsymbol{f}, G \boldsymbol{P}(D) \varphi\rangle=\left\langle G^{*} \boldsymbol{f}, \boldsymbol{P}(D) \varphi\right\rangle
\end{aligned}
$$

Put $\boldsymbol{U}=G^{*} \boldsymbol{f} \in \mathcal{H}_{-}(t)$.

$$
\begin{aligned}
\langle\boldsymbol{f}, \boldsymbol{\varphi}\rangle & =\langle\boldsymbol{U}, \boldsymbol{P}(D) \boldsymbol{\varphi}\rangle=\sum_{i=1}^{m} \sum_{j=1}^{m} \int u_{i}(X) \boldsymbol{P}_{i j}(D) \varphi_{j}(X) d X \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m} \int \boldsymbol{P}_{i j}(-D) u_{i}(X) \cdot \varphi_{j}(X) d X=\left\langle{ }^{t} \boldsymbol{P}(-D) \boldsymbol{U}, \boldsymbol{\varphi}\right\rangle
\end{aligned}
$$

Hence ${ }^{t} \boldsymbol{P}(-D) \boldsymbol{U}=\boldsymbol{f}$ in the distributional sense. Since $\boldsymbol{P}(D)$ is arbitrary except condition (C), and condition (C) is kept for the exchanging $\boldsymbol{P}(D)$ and ${ }^{t} \boldsymbol{P}(-D)$, therefore the following theorem holds.

Theorem 2. Let $\boldsymbol{P}(X)$ be the square matrix satisfying condition (C). Then, for every vector-valued function $\boldsymbol{U} \in \mathcal{H}_{-}(t)$, there exists a vector-valued function $\boldsymbol{U} \in \mathcal{H}_{-}(t)$ such that $\boldsymbol{P}(D) \boldsymbol{U}=\boldsymbol{f}$ in the distributional sense.

On the regularity. Let $\mathscr{A}_{-}^{(k)}(t)$ be the linear space of $f(X)$ such that the distributional derivative $D^{\alpha} f(X)=\left(D^{\alpha} f_{1}, \cdots, D^{\alpha} f_{n}\right) \in \mathcal{H}_{-}(t)$ for $|\alpha| \leqq k$, with the inner product $(f, \boldsymbol{g})_{k,-, t}=\sum_{|\alpha| \equiv k}\left(D^{\alpha} f, D^{\alpha} g\right)_{-, t}$, and the norm $\|f\|_{-, t}^{(k)}=\sqrt{(f, f)_{k,-, t}}$. Then $\mathscr{H}_{-}^{(k)}(t)$ is a Hilbert space. Similarly, $\mathcal{H}_{+}^{(k)} t$ $=\left\{\boldsymbol{f} ; D^{\alpha} \boldsymbol{f} \in \mathcal{H}_{+}(t)\right.$ for $\left.|\alpha| \leqq k\right\}$ is a Hilbert space with the inner product $(\boldsymbol{f}, \boldsymbol{g})_{k,+, t}=\sum_{|\alpha| \leq k}\left(D^{\alpha} f, D^{\alpha} \boldsymbol{g}\right)_{+, t} . \quad$ Now, the bilinear form on $\mathcal{H}_{+}^{(k)}(t) X \mathcal{H}_{-}^{(k)}(t)$ is defined by $\langle\boldsymbol{f}, \boldsymbol{g}\rangle_{k}=\sum_{|\alpha| \leqq k}\left\langle D^{\alpha} \boldsymbol{f}, D^{\alpha} \boldsymbol{g}\right\rangle$. Then this bilinear form \langle,\rangle_{k} is continuous.
The next estimate follows immediately from estimate (3):

$$
\|\varphi\|_{+, t}^{(k)} \leqq C\|\boldsymbol{P}(D) \varphi\|_{+, t}^{(k)} \quad \text { for every } \varphi \in(\mathscr{D})^{m} .
$$

Hence, by above estimate, there exists a continuous linear mapping G from $\mathscr{H}_{+}^{(k)}(t)$ to $\mathscr{H}_{+}^{(k)}(t)$ such that $G \boldsymbol{P}(D) \varphi=\varphi$ for every $\varphi \in(\mathscr{D})^{m}$ Then, by transposition, G defined a continuous linear mapping ${ }^{t} G: \mathcal{H}_{-}^{(k)}(t) \rightarrow \mathcal{H}_{-}^{(k)}(t)$.
Therefore, the following theorem holds alike in above Theorem 2.
Theorem 3. Let k be any positive integer, and let $\boldsymbol{P}(X)$ be the square matrix satisfying condition (C). Then, for every $\boldsymbol{f} \in \mathscr{H}_{-}^{(k)}(t)$, there exists a solution $\boldsymbol{U} \in \mathscr{G}_{-}^{(k)}(t)$ such that $\boldsymbol{P}(D) \boldsymbol{U}=\boldsymbol{f}$ in the sense of distribution.

