123. On the Existence of Solutions for System of Linear Partial Differential Equations with Constant Coefficients

By Yoshio SHIMADA Sophia University

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1971)

This paper is on the extension of a theorem by J. F. Treves (Lectures on linear partial differential equations with constant coefficients) for single linear partial differential equation to the case of system, which owes a great deal to the suggestions of Prof. Mitio Nagumo.

Let \mathfrak{A} be a non-commutative algebra with unit over the complex numbers C, and let [A, B] = AB - BA for all $A, B \in \mathfrak{A}$. Let $A_1, \dots, A_n, B_1, \dots, B_n$ be 2n elements of the algebra \mathfrak{A} , satisfying the following commutation relations:

- (1) $[A_j, A_k] = [B_j, B_k] = 0$ for $1 \le j, k \le n$. $[A_j, B_k] = 0$ for $j \ne k$.
- (2) $[A_j, B_j] = I$ (unit element of \mathfrak{A}) for $1 \le j \le n$.

Let $P(X) = P(X_1, \dots, X_n)$ be a polynomial with complex coefficients, and p be a multi-index (p_1, \dots, p_n) of n integers ≥ 0 , and let

$$P^{(p)}(X) = \left(\frac{\partial}{\partial X_1}\right)^{p_1} \cdots \left(\frac{\partial}{\partial X_n}\right)^{p_n} P(X_1, \cdots, X_n).$$

Lemma 1 (by lecture note of Treves). Let P(X), Q(X) be the polynomials in n letters with complex coefficients, then

$$Q(B)P(A) = \sum_{p} \frac{(-1)^{p}}{p!} P^{(p)}(A)Q^{(p)}(B),$$

where $A = (A_1, \dots, A_n)$, $B = (B_1, \dots, B_n)$ satisfying the above commutation relations (1), (2), and $|p| = p_1 + \dots + p_n$, $p! = p_1! \dots p_n!$.

Lemma 2. Let P(X), Q(X) be arbitrary square matrix of (m, m)type such that its elements are polynomials in n letters with complex coefficients, then

$${}^{t}(\boldsymbol{\mathcal{Q}}(B)\boldsymbol{\mathcal{P}}(A)) = \sum_{p} \frac{(-1)^{|p|}}{p!} {}^{t}\boldsymbol{\mathcal{P}}^{(p)}(A) {}^{t}\boldsymbol{\mathcal{Q}}^{(p)}(B).$$

Proof. This lemma follows immediately by substituting the equality in Lemma 1.

Now, assume that \mathfrak{A} is an algebra of linear mappings $\mathfrak{D} \rightarrow \mathfrak{D}$, where \mathfrak{D} is the linear space of infinitely differentiable complex valued functions on \mathbb{R}^n with compact support. Let $\mathcal{L}_2 = L_2 \times \cdots \times L_2$, and inner product of \mathcal{L}_2 is defined by $(f, g)_{\mathcal{L}_2} = \sum_{i=1}^m (f_i, g_i)_{L_2}$ for $f = (f_1, \dots, f_m)$, Y. SHIMADA

[Vol. 47,

 $g = (g_1, \dots, g_m)$. Let $A^* = (A_1^*, \dots, A_n^*), B = -A^*$, where A_j^* is the adjoint of A_j for the inner product of L_2 on \mathcal{D} . Further, assume that the commutation relations (1), (2) hold.

Put

$$Q(X) = {}^{t} \overline{P}(-X) = \left(\overline{P}_{ij}(-X) \begin{array}{c} i \to 1, \cdots, m \\ i \downarrow 1, \cdots, m \end{array} \right),$$

where \overline{P} is the polynomial with replaced coefficients in P by its complex conjugate. Since $P(A)^* = {}^t \overline{P}(A^*), Q(B) = P(A)^*$. On the other hand, since $Q^{(p)}(X) = (-1)^{|p|} {}^t P^{\overline{(p)}}(-X), Q^{(p)}(B) = (-1)^{|p|} P^{(p)}(A)^*$. Hence, by Lemma 2,

$${}^{t}(\boldsymbol{P}(A)*\boldsymbol{P}(A)) = \sum_{p} \frac{1}{p!} {}^{t} \boldsymbol{P}^{(p)}(A) {}^{t} \boldsymbol{P}^{(p)}(A)^{*}.$$

Since

$$({}^{t}(\boldsymbol{P}(A)^{*}\boldsymbol{P}(A))\varphi,\varphi)_{\mathcal{L}_{2}} = \sum_{p} \frac{1}{p!} ({}^{t}\boldsymbol{P}^{(p)}(A)^{*}\boldsymbol{P}^{(p)}(A)^{*}\varphi,\varphi)_{\mathcal{L}_{2}}$$

for every $\varphi \in (\mathcal{D})^m = \mathcal{D} \times \cdots \times \mathcal{D}$,

$$(\bar{\boldsymbol{P}}(A^*)\varphi, \bar{\boldsymbol{P}}(A^*)\varphi)_{\mathcal{L}_2} = \sum_p \frac{1}{p!} ({}^{t}\boldsymbol{P}^{(p)}(A)^*\varphi, {}^{t}\boldsymbol{P}^{(p)}(A)^*\varphi)_{\mathcal{L}_2}$$

Replacing A^* by A in the above equality, and since P is an arbitrary square matrix, replacing \overline{P} by P,

$$egin{aligned} & \left(oldsymbol{P}(A)arphi,oldsymbol{P}(A)arphi)_{\mathcal{L}_2} \!=\! \sum\limits_p rac{1}{p\,!} ({}^t oldsymbol{ar{P}}^{(p)}(A^*)^*arphi, {}^t oldsymbol{ar{P}}^{(p)}(A^*)^*arphi)_{\mathcal{L}_2} \ & =\! \sum\limits_p rac{1}{p\,!} (oldsymbol{P}^{(p)}(A)arphi,oldsymbol{P}^{(p)}(A)arphi)_{\mathcal{L}_2}, \end{aligned}$$

namely,

$$\|\boldsymbol{P}(A)\boldsymbol{\varphi}\|_{\mathcal{L}_{2}}^{2} = \sum_{p} \frac{1}{p!} \|\boldsymbol{P}^{(p)}(A)\boldsymbol{\varphi}\|_{\mathcal{L}_{2}}^{2}$$

for every $\forall \varphi \in (\mathcal{D})^m$.

Therefore the following lemma holds immediately from the above equality.

Lemma 3. For every $\varphi \in (\mathcal{D})^m$, there exists a constant C such that $\| P^{(p)}(A) \varphi \|_{L^2}^2 \leq C \| P(A) \varphi \|_{L^2}^2$.

Let
$$R^n \ni X = (X_1, \dots, X_n), D_j = \frac{\partial}{\partial X_j} (1 \le j \le n)$$
 and let t_1, \dots, t_n be

real numbers, all different from zero. Put $E(t, x) = \exp \frac{1}{2}(t_1^2 x_1^2 + \cdots$

$$+t_n^2 x_n^2$$
). Let $m imes m$ matrix $E(t,x) = \begin{pmatrix} E(t,x) \\ & \ddots \\ & & E(t,x) \end{pmatrix}$, then, for an

arbitrary square matrix P(X) such that its elements are polynomials, the following theorem holds from Lemma 3.

Theorem 1. There exists a constant C such that $\|E(t, x)P^{(p)}(D)\varphi\|_{\mathcal{L}_{2}}^{2} \leq C' \|E(t, x)P(D)\varphi\|_{\mathcal{L}_{2}}^{2}$

546

for every $\boldsymbol{\varphi} \in (\mathcal{D})^m$.

Proof. Let $A_j = \frac{1}{\sqrt{2}} (t_j^{-1} D_j - t_j X_j)$, then the adjoint of A_j is A_j^*

 $= -\frac{1}{\sqrt{2}}(t_j^{-1}D_j + t_jX_j). \quad \text{Put } B_j = -A_j^*. \quad \text{The commutation relations}$

(1), (2) are satisfied for $A = (A_1, \dots, A_n), B = (B_1, \dots, B_n)$. Let $P_t(X) = P(\sqrt{2}t_1X_1, \dots, \sqrt{2}t_nX_n)$, then $P_t^{(p)}(X) = \sqrt{2}^{|p|}t^p P^{(p)}(\sqrt{2}t_1X_1, \dots, \sqrt{2}t_nX_n)$. By substituting A_j for X_j , $P_t^{(p)}(A) = \sqrt{2}^{|p|}t^p P^{(p)}(D - t^2X)$, where $D - t^2X = (D_1 - t_1^2X_1, \dots, D_n - t_n^2X_n)$. By applying Lemma 3 to this square matrix $P_t(A)$,

$$2^{|v|}t^{2v}\|\boldsymbol{P}^{(v)}(D-t^{2}X)\boldsymbol{\varphi}\|_{\mathcal{L}_{2}}^{2} \leq C\|\boldsymbol{P}(D-t^{2}X)\boldsymbol{\varphi}\|_{\mathcal{L}_{2}}^{2}$$
(1)
On the other hand, for every $\boldsymbol{\varphi} \in (\mathcal{D})^{m}$,

$$P(D-t^{2}X)E(t,X)\varphi(X) = \left(\sum_{j=1}^{m} P_{ij}(D-t^{2}X)E(t,X)\varphi_{j}(X) \qquad i \downarrow 1, \cdots, m\right)$$
$$= \left(\sum_{j=1}^{m} E(t,X)P_{ij}(D)\varphi_{j}(X) \qquad i \downarrow 1, \cdots, m\right) = E(t,X)P(D)\varphi(X).$$

Hence, by applying above estimate to $E(t, X)\varphi(X)$,

$$\begin{split} & 2^{\lfloor p \rfloor} t^{2p} \, \| \textbf{\textit{E}}(t,X) \textbf{\textit{P}}^{(p)}(D) \varphi \|_{\mathcal{L}_2}^2 {\leq} C \, \| \textbf{\textit{E}}(t,X) \textbf{\textit{P}}(D) \varphi \|_{\mathcal{L}_2}^2 \\ \text{for every } \varphi \in (\mathcal{D})^m. \end{split} \tag{q.e.d.}$$

This estimate is essential in the next theorem.

Let $\mathcal{H}_+(t)$ be the linear space of *m*-tuples measurable functions f(X) on \mathbb{R}^n such that $E(t, X)f(X) \in \mathcal{L}_2$, which is provided with the inner product, and the norm,

$$(f,g)_{+,t} = \sum_{i=1}^{m} \int E^{2}(t,x) f_{i}(x) \overline{g_{i}(x)} dX, \qquad ||f||_{+,t} = \sqrt{(f,f)_{+,t}}.$$

Then $\mathcal{H}_{+t}(t)$ is a Hilbert space. Similarly, the Hilbert space $\mathcal{H}_{-}(t)$ is defined by the linear space of *m*-tuples measurable functions f(X) on \mathbb{R}^n such that $\mathbf{E}^{-1}(t, X)f(X) \in \mathcal{L}_2$, with the inner product

$$(\boldsymbol{f}, \boldsymbol{g})_{-,t} = \sum_{i=1}^{m} \int E^{-2}(t, x) f_i(x) \overline{g_i(x)} dX.$$

The bilinear form $\langle f, g \rangle$ on $\mathcal{H}_+(t) \times \mathcal{H}_-(t)$ is defined by the following: $\langle f, g \rangle = \sum_{i=1}^m \int f_i(x) g_i(x) dX.$

Then, $\mathcal{H}_{-}(t)$ is the dual space of $\mathcal{H}_{+}(t)$.

Estimate in Theorem 1 can be given by $\mathcal{H}_+(t)$ -norm

 $\| \boldsymbol{P}^{(p)}(D) \boldsymbol{\varphi} \|_{+,t}^2 \leq C \| \boldsymbol{P}(D) \boldsymbol{\varphi} \|_{+,t}^2$ for every $\boldsymbol{\varphi} \in (\mathcal{D})^m$. Henceforth, let $\boldsymbol{P}(X)$ be the square matrix

$$\begin{pmatrix} P_{ij} & i \downarrow 1, \cdots, m \\ j \to 1, \cdots, m \end{pmatrix}$$

satisfying the following conditions:

"There exists a multi-index r such that $P^{(r)}(X) = C = \text{constant matrix}$ and C has an inverse matrix C^{-1} ."

Let this condition be named "condition (C)".

Hence, for this multi-index r.

No. 6]

Y. SHIMADA

[Vol. 47,

 $\begin{aligned} \|\varphi\|_{+,t}^{2} &\leq C \|P(D)\varphi\|_{+,t}^{2} \quad \text{for every } \varphi \in (\mathcal{D})^{m}. \end{aligned} (3) \\ P(D)(\mathcal{D})^{m} &= \{P(D)\varphi; \varphi \in (\mathcal{D})^{m}\} \text{ is a linear subspace of } \mathcal{H}_{+}(t). \text{ As } \\ P(D)(\mathcal{D})^{m} \text{ is provided with the } \mathcal{H}_{+}(t)\text{-norm, linear mapping } P(D)\varphi \rightarrow \varphi \\ \text{is continuous from } P(D)(\mathcal{D})^{m} \text{ into } \mathcal{H}_{+}(t) \text{ by (3). Hence, by continuity,} \\ \text{this mapping can be extended to the closure of } P(D)(\mathcal{D})^{m} \text{ in } \mathcal{H}_{+}(t), \text{ and} \\ \text{by zero to the orthogonal complement of the closure of } P(D)(\mathcal{D})^{m} \text{ in } \\ \mathcal{H}_{+}(t). \end{aligned}$

Now, let G be the continuous linear mapping $\mathcal{H}_+(t) \rightarrow \mathcal{H}_+(t)$ defined above, and let G^* be a dual operator of G.

$$\mathcal{H}_{-}(t) \ni \forall f, \quad \text{for every } \varphi \in (\mathcal{D})^{m}, \\ \langle f, \varphi \rangle = \langle f, GP(D)\varphi \rangle = \langle G^{*}f, P(D)\varphi \rangle$$

Put $U = G^* f \in \mathcal{H}_-(t)$.

$$\langle f, \varphi \rangle = \langle U, P(D)\varphi \rangle = \sum_{i=1}^{m} \sum_{j=1}^{m} \int u_i(X) P_{ij}(D)\varphi_j(X) dX$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{m} \int P_{ij}(-D) u_i(X) \cdot \varphi_j(X) dX = \langle P(-D)U, \varphi \rangle$$

Hence ${}^{t}P(-D)U=f$ in the distributional sense. Since P(D) is arbitrary except condition (C), and condition (C) is kept for the exchanging P(D) and ${}^{t}P(-D)$, therefore the following theorem holds.

Theorem 2. Let P(X) be the square matrix satisfying condition (C). Then, for every vector-valued function $U \in \mathcal{H}_{-}(t)$, there exists a vector-valued function $U \in \mathcal{H}_{-}(t)$ such that P(D)U=f in the distributional sense.

On the regularity. Let $\mathscr{H}_{-}^{(k)}(t)$ be the linear space of f(X) such that the distributional derivative $D^{\alpha}f(X) = (D^{\alpha}f_1, \dots, D^{\alpha}f_n) \in \mathscr{H}_{-}(t)$ for $|\alpha| \leq k$, with the inner product $(f, g)_{k, -, t} = \sum_{|\alpha| \leq k} (D^{\alpha}f, D^{\alpha}g)_{-, t}$, and the norm $||f||_{-, t}^{(k)} = \sqrt{(f, f)_{k, -, t}}$. Then $\mathscr{H}_{-}^{(k)}(t)$ is a Hilbert space. Similarly, $\mathscr{H}_{+}^{(k)}t = \{f; D^{\alpha}f \in \mathscr{H}_{+}(t) \text{ for } |\alpha| \leq k\}$ is a Hilbert space with the inner product $(f, g)_{k, +, t} = \sum_{|\alpha| \leq k} (D^{\alpha}f, D^{\alpha}g)_{+, t}$. Now, the bilinear form on $\mathscr{H}_{+}^{(k)}(t)X\mathscr{H}_{-}^{(k)}(t)$ is defined by $\langle f, g \rangle_{k} = \sum_{|\alpha| \leq k} \langle D^{\alpha}f, D^{\alpha}g \rangle$. Then this bilinear form \langle , \rangle_{k} is continuous.

The next estimate follows immediately from estimate (3):

 $\|\varphi\|_{+,t}^{(k)} \leq C \|P(D)\varphi\|_{+,t}^{(k)}$ for every $\varphi \in (\mathcal{D})^m$.

Hence, by above estimate, there exists a continuous linear mapping G from $\mathcal{H}^{(k)}_+(t)$ to $\mathcal{H}^{(k)}_+(t)$ such that $GP(D)\varphi = \varphi$ for every $\varphi \in (\mathcal{D})^m$. Then, by transposition, G defined a continuous linear mapping ${}^tG: \mathcal{H}^{(k)}_-(t) \to \mathcal{H}^{(k)}_-(t)$.

Therefore, the following theorem holds alike in above Theorem 2.

Theorem 3. Let k be any positive integer, and let P(X) be the square matrix satisfying condition (C). Then, for every $f \in \mathcal{H}_{-}^{(k)}(t)$, there exists a solution $U \in \mathcal{H}_{-}^{(k)}(t)$ such that P(D)U=f in the sense of distribution.