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123. On the Existence of Solutions for System of Linear
Partial Differential Equations with
Constant Coefficients

By Yoshio SHIMADA
Sophia University

(Comm. by Kinjiré6 KUNUGI, M. J. A., June 12, 1971)

This paper is on the extension of a theorem by J.F. Treves
(Lectures on linear partial differential equations with constant coeffi-
cients) for single linear partial differential equation to the case of
system, which owes a great deal to the suggestions of Prof. Mitio
Nagumo.

Let % be a non-commutative algebra with unit over the complex
numbers C, and let [A,B]l=AB—BA for all A,Bc¥. Let A4,
-+,A., B, ---,B, be 2n elements of the algebra 2, satisfying the
following commutation relations:

1) [A,;, Ad=I[B,, B;]=0 for 1<j, k<n. [A;, B;]=0 for jxk.
(2 [A,, B;1=1I (unit element of %) for 1<j<m.

Let P(X)=P(X,, - - -, X,) be a polynomial with complex coefficients,

and p be a multi-index (p,, - -+, p,) of n integers >0, and let
»(x)= (9 p‘...( g\
PO(X)= ( BXI) axn) PX,, -, X.).

Lemma 1 (by lecture note of Treves). Let P(X), Q(X) be the poly-

nomials in n letters with complex coefficients, then

P =3 S Po @ ®),

where A=(4,, ---,A,), B=(B,, -, B,) satisfying the above commuta-
tion relations (1), (2), and |p|=p,+ - + D, 2 !1=0,1-+ D, .

Lemma 2. Let P(X), Q(X) be arbitrary square matrix of (m,m)-
type such that its elements are polynomials in n letters with complex
coefficients, then

(—1D'?!
z(Q(B)p(A)):Z; Ttp(p)(A) LQ(P)(B).

Proof. This lemma follows immediately by substituting the
equality in Lemma 1.

Now, assume that % is an algebra of linear mappings 9—9,
where 4 is the linear space of infinitely differentiable complex valued
functions on R with compact support. Let ,=L,X ... X L,, and inner
product of _[; is defined by (f, @) o =217 (fi, 91, for f=(f1, -+, ),
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9=(9y, -, 9n). Let A*=(A4¥, ..., A%, B=—A*, where A% is the ad-
joint of A; for the inner product of L, on 9. Further, assume that
the commutation relations (1), (2) hold.

Put

00="P=X)=(Py=X) [T,

where P is the polynomial with replaced coeﬂ“ic1ents in P by its complex
conjugate. Since P(4)*='P(A*),0(B)=P(A)*. On the other hand,
since V(X)) =(—1)? t PP (—X), 0P(B)=(—1)'?'PP(A)*,

Hence, by Lemma 2,

(PAPA)=T] }}—!‘PW’(A)‘P@’(A)*-
Since
CPA*PU, 9 =3 % PPAYPP(A) e, ) o,
for every p e (D"=DX --- XD,
(P(4%)p, PA¥g) £, =T %(‘PW’(A)*% PP (A)*p) f .

Replacing A* by A in the above equality, and since P is an arbitrary
square matrix, replacing P by P

PA)p, P(A)p) = Z (‘P"”(A*)* s PP(A¥*Q)

—Z (P‘p)(A)so P(p)(A)SD)_[: »
namely,
1
Pl =3 L IPO @y,

for every Yo e (D)™
Therefore the following lemma holds immediately from the above
equality.

Lemma 3. For every ¢ € (D)™, there exists a constant C such that
IPP( Al 7, <ClIP(AelL,

Let R*s X=(X,, -

1 >tn be

real numbers, all different from zero. Put E(t,x)=exp %(t"{xi-}

(E’(t, x)

+t2a2). Let mXxXm matrix E(t,x)= ), then, for an

E(, x)
arbitrary square matrix P(X) such that its elements are polynomials,
the following theorem holds from Lemma 3.
Theorem 1. There exists a constant C such that
| E(t, x)P‘”)(D)SOIIfgzé C'|E(t, ©)P(D)eplp,
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for every ¢ € (D)™.

Proof. Let A= L_

V2
=—?/1?2‘(t;1Dj+th ). Put B,=—A% The commutation relations

(t;7*'D;—t;X,), then the adjoint of A; is A¥

(1), (2) are satisfied for A=(4,,---,4,),B=({®B,, ---,B,). Let P(X)
=PW2tX, - -, ¥V 2t,X,), then PP(X)=42?'trP® (4 2t,X,, ---,
v 2t,X,). By substituting A4, for X,, P®(A)=+ 271t? p»(D—*X),
where D—#?X=(D,—#X,,---,D,—t2X,). By applying Lemma 3 to
this square matrix P,(4),

2'P't“’||P”‘”(D—tZX)goll":52§CllP(D—th)cpllﬁL«? (1)
On the other hand, for every ¢ ¢ (D)™,

PO—EX)E(, Xp(X) = 3 PO~ DB DX i1, m)

= (:;E(t, XOP(D)pyX) i1, m) =E(t, X)P(D)p(X).

Hence, by applying above estimate to E(f, X)¢(X),
212 | Et, )PP (D), < C | ECt, X)PD)e|p,
for every ¢ € (D)™. (q.e.d.)
This estimate is essential in the next theorem.
Let 9(,(t) be the linear space of m-tuples measurable functions

f(X) on R” such that E(t, X)f(X) ¢ [,, which is provided with the inner
product, and the norm,

f, @s= i B¢, ) f g @dX,  |fll.c=vE e

Then 4(,,(t) is a Hilbert space. Similarly, the Hilbert space J(_(¢) is
defined by the linear space of m-tuples measurable functions f(X) on
R" such that E-'(t, X) f(X) € L,, with the inner product

(£9)-.c=3, |Et, 0) (@9 .@)dX.
The bilinear form {f, g> on 4, (t) x 9(_(t) is defined by the following:
Ly=3 [F@o@x.

Then, 4{_(t) is the dual space of 9(,(?).
Estimate in Theorem 1 can be given by .4, (f)-norm
IPP(D)el, . =C | PWD)pl,.  for every g e (D)™
Henceforth, let P(X) be the square matrix
1 11, m)
(P“ j__>1, cee,m
satisfying the following conditions:
“There exists o multi-index r such that P (X)=C=_constant matrix
and C has an tnverse matrix C~.”
Let this condition be named “condition (C)”.
Hence, for this multi-index r.
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leli, . =C || P(D)pl,,  for every ¢ e (D)™ (3)
PD) D™ ={P(D)p; pec (D)™} is a linear subspace of I (f). As
P(D)( D)™ is provided with the 4, (t)-norm, linear mapping P(D)p—¢
is continuous from P(D)(D)™ into 4(,(t) by (3). Hence, by continuity,
this mapping can be extended to the closure of P(D)(I)™ in 4, (1), and
by zero to the orthogonal complement of the closure of P(D)( D)™ in
I, ().

Now, let G be the continuous linear mapping 9, (t)—H . (t) defined
above, and let G* be a dual operator of G.

R OEMA for every ¢ ¢ (D)™,

L @>={f; GP(DIgy={G*f, P(D)p)
Put U=G*fe I(_(t).

o >=<U, P(D)p>= f;l f‘;l w(X)P, (D)o (X)dX
=3 37 [Pi(— DX 0 ,(X)dX =(P(— DU, o>

i=1j=1
Hence ‘P(—D)U=fin the distributional sense. Since P(D) is arbitrary
except condition (C), and condition (C) is kept for the exchanging P(D)
and !P(— D), therefore the following theorem holds.

Theorem 2. Let P(X) be the square matrix satisfying condition
(C). Then, for every vector-valued function Uc 9Y_(t), there exists a
vector-valued function Ue J(_(t) such that P(D)U=f in the distribu-
tional sense.

On the regularity. Let 4(®(t) be the linear space of f(X) such
that the distributional derivative D<f(X)=(D*f,, - - -, D*f,) € J_(?) for
|a|<k, with the inner product (f; g):, - = Z (D “f, D"‘g)_ .» and the norm

A1, =+ (£, x.-.- Then H*(t) is a Hllbert space. Similarly, 4 ®t
={f; D*fe 4, for |a|<k} is a Hilbert space with the inner product
f, Dx. .. = Z (D°f,D*g), .. Now, the bilinear form on J(* ()X .4 ¥ (1)

is defined by < 5 g>k_ Z (D*f, D°g>. Then this bilinear form <, > is

continuous.
The next estimate follows immediately from estimate (3):
lel|®,<C | P(D)|| P, for every ¢ € (D)™.

Hence, by above estimate, there exists a continuous linear mapping
G from H®(t) to HP(t) such that GP(D)p=¢ for every ¢ec (D™
Then, by transposition, G defined a continuous linear mapping
G HPE) - H P (D).
Therefore, the following theorem holds alike in above Theorem 2.

Theorem 3. Let k be any positive integer, and let P(X) be the
square motriz satisfying condition (C). Then, for every fe P (1),
there exists a solution Ue ¥ (t) such that P(D)U=f in the sense of
distribution.



