118. Note on Splitting Length of Abelian Groups

By Ryuichi Ito

Department of Mathematics, Waseda University, Tokyo

(Comm. by Kenjiro SHODA, M. J. A., June 12, 1971)

Let A be an abelian group. Let tA denote the torsion part of A and A^n denote $A \otimes \cdots \otimes A$, n times. The splitting length l(A) of an abelian group A is the least positive integer n, such that A^n splits.

In [3] J. M. Irwin, S. A. Khabbaz, and G. Rayna gave the definition of the splitting length of abelian groups as above and they proved that A^n splits if and only if $n \ge l(A)$ when tA is *p*-primary. We extend this result to abelian groups without *p*-primarity of the torsion part. First we have the next lemma for abelian groups A and B.

Lemma. If $A \otimes B$ splits, then $A/tA \otimes B$ also splits.

From the pure-exact sequence

$$0 \rightarrow tB \rightarrow B \rightarrow B/tB \rightarrow 0$$

we obtain the exact sequence

 $0 \rightarrow A/tA \otimes tB \rightarrow A/tA \otimes B \rightarrow A/tA \otimes B/tB \rightarrow 0$

Let f be the natural homomorphism from A onto A/tA and i be the identity map of B. Then we have the following commutative diagram ([2], p. 33).

Thus $E' = (f \otimes i)E$. Since $f \otimes i$ induces a homomorphism from $Ext(A/tA \otimes B/tB, t(A \otimes B))$ into $Ext(A/tA \otimes B/tB, A/tA \otimes tB)$ and E is splitting, E' is also splitting ([1], section 50). Moreover $A/tA \otimes tB$ is the torsion part of $A/tA \otimes B$. Thus $A/tA \otimes B$ splits.

Now we prove our theorem.

Theorem. A^n splits if and only if $n \ge l(A)$.

Suppose A^m splits. Then $A^{m-1}/tA^{m-1}\otimes A$ splits from the above lemma. Since $A^{m-1}/tA^{m-1}\cong (A/tA)^{m-1}, (A/tA)^{m-1}\otimes A$ splits. Then $(A/tA)^m\otimes A$ splits because A/tA is torsion-free. Suppose $A^m = T \oplus F$, where T is torsion and F is torsion-free. Then $A^{m+1} = (T \oplus F) \otimes A$ $= T \otimes A \oplus F \otimes A$.

Since $F \cong (A/tA)^m$, $F \otimes A$ splits. Considering $T \otimes A$ is torsion, A^{m+1} also splits. This concludes our proof.

R. Ito

References

- [1] L. Fuchs: Infinite Abelian Groups. Academic Press (1970).
- [2] P. A. Griffith: Infinite Abelian Group Theory. The University of Chicago Press (1970).
- [3] J. M. Irwin, S. A. Khabbaz, and G. Rayna: The role of the tensor product in the splitting of abelian groups. Journal of Algebra, 14, 423-442 (1970).