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116. Modules over Bounded Dedekind Prime Rings. I

By Hidetoshi MARUBAYASHI
College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M.J.A., June 12, 1971)

The purpose of this paper is to generalize the theory of modules
over commutative Dedekind rings [3] to the case of modules over
bounded Dedekind prime rings.

1. Definitions and notations. In this paper, all rings have iden-
tity and are associative, and modules are unitary. Ideals always mean
two-sided ideals. Let R be a prime Goldie ring and let Q be the quo-
tient ring of R. Then R is called a Dedekind ring if R is a maximal order
in Q and every right (left) R-ideal is projective (see [8]). R is bounded
if every integral one-sided R-ideal contains a non-zero ideal. Let M
be an R-module. We say that m e M is a torsion elemen$ if there is a
regular element c in R such that mc--O. Since R satisfies the Ore
condition, the set of torsion elements of M is a submodule TM. And
M/T is evidently torsion-free (has no torsion elements). Let x be an
element of M. Then we define O(x)={r R lxr--O} and say that O(x)
is an order right ideal of x. Let P be a prime ideal of R and let M be
a torsion R-module. Then we say that M is primary (P-primary) if
O(x) contains a power of P for every element x in M. A submodule S
of an R-module is said to be pure if Sc-SfqMc for every regular
element c in R. In particular, S is said to be strongly pure if
Sr--S fq Mr for every element r in R. Then the following properties
hold: (i) Any direct summand is strongly pure. (ii) A (strongly) pure
submodule of a (strongly) pure submodule is (strongly) pure. (iii) The
torsion submodule is pure. (iv) If M/S is torsion-free, then S is pure.
We define an R-module M to be divisible if Mc=M for all regular
element c in R. Finally J or J(R) always denotes the Jacobson radical
of the ring R. The ring R is local if R/J is artinian and= J-----(0).
R is s-local if R is local and R/J is division ring.

2. Modules over bounded Dedekind prime rings. Let R be a
semi-hereditary prime Goldie ring, let Q be the quotient ring of R and
let M be a finitely generated torsion-free R-module. Then the sequence
OM-M(R)RQ is exact and M(R)RQ is Q-projective. So M(R)Q is a
submodule of a finitely generated free Q-module. Furthermore, since
M is finitely generated, M is a submodule of a ree R-module. Hence
M is R-projective. Now let u be a uniform element of R. Then the
short exact sequence O--.O(u)---,R-ouR--,O splits. So R is a direct sum
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of a finite number of uniform right ideals. Hence we have
Theorem 1. Let R be a semi-hereditary prime Goldie ring and

let M be a finitely generated R-module with torsion submodule T.
Then

( i) M/T is a projective R-module and is a direct sum of a finite
number of uniform right ideals.

(ii) M-=TM/ T.
From now on, R will be a bounded Dedekind prime ring and let

Q be the simple artinian quotient ring of R. Since every integral
right R-ideal contains non-zero ideals, we have

Theorem 2. Any torsion module over a bounded Dedekind prime
ring is a direct sum of primary submodules.

Let P be a prime ideal of R and let Re be the local ring of R with
respect to P in the sense of Goldie [2]. Then Re={ac-la e R, c e C(P)}
by Lemma 2.10 of [7], where ’(P)={c e R lcx e P@x e P}. Now, let M
be a P-primary R-module. Then we can regard, in a natural way, M
as an Re-module.

Lemma 1. Let M be any module, let S be a submodule such that
M/S is a direct sum of modules U, and let T be the inverse image in
M of U. Suppose S is a direct summand of each T. Then S is a
direct summand of M.

Lemma 2. Let R be a bounded Dedekind prime ring, let M be an
R-module and let S be a pure submodule such that M/S is torsion. If
Xo is an element of M/S, then there exists an element x in M, which
maps on Xo rood S, and O(x)=O(xo).

We shall call an R-module decomposable i it is a direct sum of
cyclic nodules and uniform right ideals.

From Lemma 1 and Lemma 2 we have
Theorem :. Let R be a bounded Dedekind prime ring, let M be

an R-module, and let S be a pure submodule such that M/S is decom-
posable. Then S is a direct summand of M.

By Theorems 1 and 3, we have
Corollary. Let R be a bounded Dedekind prime ring, let M be a

finitely generated R-module and let S be a submodule. Then the
following three conditions are equivalent:

( i ) S is a direct summand of M.
(ii) S is a strongly pure submodule of M.
(iii) S is a pure submodule of M.
Since every proper homomorphic image of a bounded prime

Dedekind ring is generalized uniserial, by Theorem 2.54 of [1; p. 79],
we have

Theorem 4. Let R be a bounded Dedekind prime ring and let M
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be an R-module of bounded order (i.e., Mc-=O for some regular element
c of R). Then M is a direct sum of cyclic modules, each of which is
an artinian module.

Theorem 5. Let R be a bounded Dedekind prime ring, let M be
an R-module, and let S be a strongly pure submodule of bounded order.
Then S is a direct summand of M.

Corollary. Let D be a bounded Dedekind domain, let M be a D-
module, and let S be a pure submodule of bounded order. Then S is a

direct summand of M.
Theorem 6. Let R be a bounded Dedekind prime ring and let M

be an R-module such that M/T is finitely generated, where T is the
torsion submodule of M. If S is a pure submodule of bounded order,
then S is a direct summand of M.

Let Re be the local ring of R with respect to P. Then Re=(D),
where D is a bounded s-local domain in which every one-sided ideal of
D is an ideal and every ideal of D is a power of J(D). Furthermore,
we let J(D)=poD--Dpo or some poeD. Then J(Rp)=poRp--Repo.
Now an idempotent e in Re is called uniform if ere is a uniform right

ideal o Rr. Then the sequence
o ep,( ) O--eRe/eP’ eRp/

is exact, where P’=J(Re) and 9(eq+eP’)=epoq+eP’+ ior every q
in R.

Lemma :. Let R be a bounded Dedekind prime ring. Then any
simple R-module is primary and is isomorphic to eR / eP for some prime
ideal P, where e is a uniform idempotent contained in Re.

We denote the injective hull o an R-module A by E(A).
Theorem 7. The inductive limit E of the rings eRe/eP’,

n=l, 2, ..., under the homomorphisms defined in (.), is divisible
and is isomorphic to E(eR/ eP).

We shall call the module E(eR/eP) in Theorem 7 a module of
type P.

By Theorem 1.4 of [6], Theorem 3.4 o [5] and Lemma 3 we obtain
the ollowing two theorems:

Theorem 8. Let R be a bounded Dedekind prime ring with
quotient ring Q. Then any divisible R-module is the direct sum of
minimal right ideals of Q and modules of type P for various prime
ideals P.

Theorem 9o Any module M over a bounded Dedekind prime ring
possesses a unique large.st divisible submodule D M=D@E, where E
has no divisible submodules.

Let P be a prime ideal o a bounded Dedekind prime ring R. Then
we denote the completion of Re with respect to J(Re) by Re.
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Lemma 4. /p is a bounded local Dedekind prime ring which is a
principal ideal ring.

As is well known, the ring of endomorphisms of a g.roup of type
p is isomorphic to the ring of p-adic integers [4;p. 155]. In our
case, we have

Theorem 10. Let P be a prime ideal of a bounded Dedekind
prime ring R and let E be an R-module of type P. Then

( i ) E is in a natural way an p-module.
(ii) E is an e-module of type , where j(/)=/3.
(iii) The ring of endomorphisms of E is isomorphic to eee,

where e is a uniform idempotent in Rr.
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