168. Freely Generable Classes of Structures

By Tsuyoshi FUJIWARA University of Osaka Prefecture (Comm. by Kenjiro Shoda, M. J. A., Dec. 13, 1971)

A class K of structures is said to be freely generable, if for any (non-empty) set E of generator symbols and any set Ω of defining relations, there exists a freely generated structure in K presented by E and Ω . The conditions for a class of algebras to be freely generable were studied in [1; § 8 in Chap. III] and [2]. Our main purpose of this note is to show a new necessary and sufficient condition for a class of structures to be freely generable.

A structure \mathfrak{A} of the similarity type corresponding to a first order language L is simply called a structure for L. The domain of \mathfrak{A} is denoted by $D[\mathfrak{A}]$. A formula Φ of L which contains at most some of x_1, \dots, x_n as free variables is denoted by $\Phi(x_1, \dots, x_n)$ if the free variables x_1, \dots, x_n need to be indicated. Let $\Phi(x_1, \dots, x_n)$ be any formula of L, and let a_1, \dots, a_n be elements in $D[\mathfrak{A}]$. Then we write $(\mathfrak{A}; a_1, \dots, a_n) \models \Phi(x_1, \dots, x_n)$, if a_1, \dots, a_n satisfy $\Phi(x_1, \dots, x_n)$ in \mathfrak{A} when the free variables x_1, \dots, x_n are assigned the values a_1, \dots, a_n respectively. An atomic formula of L means a formula of the form $t_1 = t_2$ or of the form $r(t_1, \dots, t_m)$, where r is an m-ary relation symbol of L and t_1, \dots, t_m are terms of L. Let \mathfrak{A} and \mathfrak{B} be structures for a first order language L. A mapping h of $D[\mathfrak{A}]$ onto (or into) $D[\mathfrak{B}]$ is called an L-homomorphism of \mathfrak{A} onto (or into) \mathfrak{B} , if for any atomic formula $\Theta(x_1, \dots, x_n)$ of L and for any elements a_1, \dots, a_n in $D[\mathfrak{A}], (\mathfrak{A}; a_1, \dots, a_n)$ $\models \Theta(x_1, \dots, x_n)$ implies $(\mathfrak{B}; h(a_1), \dots, h(a_n)) \models \Theta(x_1, \dots, x_n)$. An Lhomomorphism h of \mathfrak{A} onto \mathfrak{B} is called an L-isomorphism of \mathfrak{A} onto \mathfrak{B} if the mapping h is one to one and the inverse mapping h^{-1} is also an L-homomorphism. Let E be a set of constant symbols (i.e. nullary operation symbols) not belonging to L. Then, a new first order language can be obtained from L by adjoining all the constant symbols $e \in E$, which is denoted by L(E). If L(E) contains at least one constant symbol, then E is said to be L-generative. Now let \mathfrak{A} be a structure for L, and ψ a mapping of E into $D[\mathfrak{A}]$. Then \mathfrak{A} can be expanded to a structure for L(E), by considering $\psi(e)$ as interpretations of e in \mathfrak{A} , and the expanded structure is denoted by $\mathfrak{A}(\psi)$.

Let K be a class of structures for L. Let E be a set of constant symbols not belonging to L, and Ω a set of atomic sentences (i.e. atomic formulas without free variables) of L(E). Now let \mathfrak{A} be a structure for L, and ψ a mapping of E into $D[\mathfrak{A}]$. The pair (\mathfrak{A}, ψ) is called a K-model of Ω with the set E of generator symbols, if \mathfrak{A} is in K and generated by $\psi(E)$ and the expanded structure $\mathfrak{A}(\psi)$ is a model of Ω . We denote by $[E, \Omega; K]$ the class of all K-models of Ω with the set E of generator symbols. A K-model (\mathfrak{F}, φ) of Ω with the set E of generator symbols is said to be *freely generated*, if for any $(\mathfrak{A}, \psi) \in [E, \Omega; K]$, there exists an L(E)-homomorphism of $\mathfrak{F}(\varphi)$ onto $\mathfrak{A}(\psi)$, i.e. there exists an *L*-homomorphism of \mathfrak{F} onto \mathfrak{A} that maps $\varphi(e)$ to $\psi(e)$ for each $e \in E$. We denote by $F[E, \Omega; K]$ the class of all freely generated K-models of Ω with the set E of generator symbols. Note that if (\mathfrak{F}, φ) and $(\mathfrak{F}', \varphi')$ are in $F[E, \Omega; K]$ then $\mathfrak{F}(\varphi)$ and $\mathfrak{F}'(\varphi')$ are L(E)-isomorphic. Now let K be a class of structures for L. K is said to be *freely generable*, if for any L-generative set E of constant symbols not belonging to L and for any set Ω of atomic sentences of L(E), $F[E, \Omega; K]$ is not empty. K is said to be conditionally freely generable, if for any L-generative set E of constant symbols not belonging to L and for any set Ω of atomic sentences of L(E), $[E, \Omega; K] \neq \emptyset$ implies $F[E, \Omega; K] \neq \emptyset$, where \emptyset denotes the empty set.

Let K be a class of structures for L. We denote by $P_s(K)$ the class of all subdirect products of non-empty families of structures in K, and by $P_s^*(K)$ the class of all subdirect products of empty or non-empty families of structures in K, where the subdirect product of the empty family of structures for L means the one-element structure \mathfrak{E}_L whose domain consists of only the empty set \emptyset and in which every atomic formula of L is valid. Moreover we denote by I(K) the class of all Lisomorphic copies of structures in K. A class K of structures for L is said to be abstract if $I(K) \subseteq K$.

Theorem 1. Let K be a class of structures for a first order language L. Then, a necessary and sufficient condition for K to be conditionally freely generable is that $P_s(K) \subseteq I(K)$.

Proof of necessity. Assume that K is conditionally freely generable. Let $(\mathfrak{A}_i | i \in I)$ be any non-empty family of structures in K, and let \mathfrak{A} be any subdirect product of all $\mathfrak{A}_i, i \in I$. Then, it is sufficient to prove that \mathfrak{A} is in I(K). Now let $E = \{e_a \mid a \in D[\mathfrak{A}]\}$ be a set of constant symbols not belonging to L, and Ω the set of all atomic sentences of L(E) which are valid in $\mathfrak{A}(\psi)$, where ψ is the mapping of E onto $D[\mathfrak{A}]$ such that $\psi(e_a) = a$ for all $e_a \in E$. Moreover let ψ_i be the mapping of E onto $D[\mathfrak{A}_i]$ which maps e_a to a(i), where a(i) denotes the *i*-th component of a. Then it is clear that (\mathfrak{A}_i, ψ_i) is in $[E, \Omega; K]$. Hence by the assumption, we have that $F[E, \Omega; K] \neq \emptyset$, i.e. there exists a freely generated K-model (\mathfrak{F}, φ) belonging to $F[E, \Omega; K]$. Moreover there exists an L(E)-homomorphism h of $\mathfrak{A}(\psi)$ onto $\mathfrak{F}(\varphi)$, because every atomic sentence of L(E) valid in $\mathfrak{A}(\psi)$ is also valid in $\mathfrak{F}(\varphi)$. On the other hand, for each $i \in I$, there exists an L(E)-homomorphism of $\mathfrak{F}(\varphi)$ onto $\mathfrak{A}_i(\psi_i)$, because $(\mathfrak{F}, \varphi) \in F[E, \Omega; K]$ and $(\mathfrak{A}_i, \psi_i) \in [E, \Omega; K]$. Hence any atomic sentence Θ of L(E) valid in $\mathfrak{F}(\varphi)$ is valid in every $\mathfrak{A}_i(\psi_i), i \in I$. Hence the Θ is valid in $\mathfrak{A}(\psi)$. Therefore the L(E)-homomorphism h of $\mathfrak{A}(\psi)$ onto $\mathfrak{F}(\varphi)$ is an L(E)-isomorphism. Hence \mathfrak{A} is L-isomorphic to \mathfrak{F} , and hence \mathfrak{A} is in I(K). Therefore we have $P_i(K) \subseteq I(K)$.

Proof of sufficiency. Assume that $P_s(K) \subseteq I(K)$. Let E be any L-generative set of constant symbols not belonging to L, and let Ω be a set of atomic sentences of L(E) such that $[E, \Omega; K] \neq \emptyset$. We shall below prove that $F[E, \Omega; K] \neq \emptyset$. It is easy to see that there exists a non-empty subset $\{(\mathfrak{A}_i, \psi_i) | i \in I\}$ of $[E, \Omega; K]$ such that for any $(\mathfrak{B}, \psi) \in [E, \Omega; K]$, some $\mathfrak{A}_i(\psi_i)$ is L(E)-isomorphic to $\mathfrak{B}(\psi)$. Now let \mathfrak{A} be the direct product of all $\mathfrak{A}_i, i \in I$, and let φ be the mapping of E into $D[\mathfrak{A}]$ such that for each $e \in E$ and for each $i \in I$, the *i*-th component of $\varphi(e)$ is $\psi_i(e)$. Let \mathfrak{F} be a substructure of \mathfrak{A} generated by $\varphi(E)$. Then \mathfrak{F} is a subdirect product of $\mathfrak{A}_i, i \in I$, and hence by the assumption, \mathfrak{F} is in I(K). And it is easy to see that (\mathfrak{F}, φ) is in $[E, \Omega; I(K)]$. Moreover we have that for any $(\mathfrak{B}, \psi) \in [E, \Omega; I(K)]$, there exists an L(E)-homomorphism of $\mathfrak{F}(\varphi)$ onto $\mathfrak{B}(\psi)$, because some $\mathfrak{A}_i(\psi_i)$ and $\mathfrak{B}(\psi)$ are L(E)isomorphic, and $\mathfrak{F}(\varphi)$ is clearly a subdirect product of all $\mathfrak{A}_i(\psi_i), i \in I$. Therefore (\mathfrak{F}, φ) is a freely generated I(K)-model of Ω with the set E of generator symbols. Hence $F[E, \Omega; I(K)] \neq \emptyset$, and hence $F[E, \Omega; K]$ $\neq \emptyset$. Therefore we have that K is conditionally freely generable.

Theorem 2. Let K be a class of structures for a first order language L. Then, a necessary and sufficient condition for K to be freely generable is that $P_s^*(K) \subseteq I(K)$.

Proof. Suppose that K is freely generable. Then $P_s(K) \subseteq I(K)$ follows immediately from Theorem 1. Moreover it is easy to see that K contains a one-element structure for L in which every atomic formula of L is valid. Hence I(K) contains the one-element structure \mathfrak{S}_L whose domain is $\{\emptyset\}$ and in which every atomic formula of L is valid. Hence we have $P_s^*(K) \subseteq I(K)$. Conversely, assume that $P_s^*(K) \subseteq I(K)$. Then K contains a one-element structure for L in which every atomic formula of L is valid. Hence [E, Ω ; K] $\neq \emptyset$ holds for any L-generative set E of constant symbols not belonging to L and for any set Ω of atomic sentences of L(E). Hence by Theorem 1, K is freely generable.

As immediate consequences of Theorems 1 and 2, we have the following two theorems:

Theorem 3. Let K be an abstract class of structures which are of the same type. Then

(1) K is conditionally freely generable if and only if $P_s(K) \subseteq K$;

(2) K is freely generable if and only if $P_s^*(K) \subseteq K$.

T. FUJIWARA

Theorem 4. Let K be a class of structures which are of the same type. Then

- (1) $I(P_s(K))$ is the smallest conditionally freely generable abstract class containing the class K;
- (2) $I(P_s^*(K))$ is the smallest freely generable abstract class containing the class K.

References

- [1] P. M. Cohn: Universal Algebra, Harper and Row. New York (1965).
- [2] T. Fujiwara: Note on free algebraic systems. Proc. Japan Acad., 32, 662–664 (1956).