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7. The Powers of an Operator of Class C,

By Ritsuo NAKAMOTO
Tennoji Senior Highschool

(Comm. by Kinjiré KuNUGI, M. J. A., Jan. 12, 1972)

1. In a recent paper [4], M. J. Crabb gives the best bound + 2 of
the inequality proposed by C. A. Berger and J. G. Stampfli [2]:

lim sup | Tz || <V 2 ||z,

n— o0

for an operator T with w(T)=1, where w(T) is the numerical radius
of T given by
w(T)=sup {|(Tz, 2)|; |@||=1}.

Using his method, he proves also a generalization of a theorem of
Berger-Stampfli [3] and Williams-Crimmins [6]. In the present note,
we shall give a further generalization of Crabb’s theorem in an ele-
mentary method basing on an idea of C. A. Berger and J. G. Stampfli.

2. Following after B. Sz. Nagy and C. Foiag [5], let C, be the set
of all operators acting on a Hilbert space $ such that there exist a
Hilbert space & containing § as a subspace and a unitary operator U
acting on & satisfying

(1) T™=pPU™|$ (m=1,2,...),
where P is the projection of & onto . (1) implies at once
(2) T*m=pPU*™ |9 m=1,2,...).

It is well-known by [5] that
C={TeB®);|T|=1}
and
C,={T e B(®); w(T)<1}.
Therefore, the following theorem contains Crabb’s theorem as a
special case (p=2):
Theorem. Suppose that T € C,(o+1) and that
(3) [T"z|=p
for some integer n and a unit vector x. Then we have
(i) Trx=0,
(ii) ||T*z||=+ p for k=1,2,...,n—1,
(iii) , Tz, ---, T"x are mutually orthogonal,
and
(iv) The linear span & of =, Tx, ---,T"x is o reducing subspace
of T.
3. Proof. Ad (i). Let T be asin (1). Then
pllzl|=|T"x|=| pPU x||=p| PU"x|.
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Since U is unitary and P is a projection, we have
(4) PUx=U"x,
or Urx e $. Hence
Trx=pU .
Therefore, we have
oPU x=T""x=T(oU"x)=(0PU)(oU"x)= p’PU"*'x.
Hence we have T"*'x=0 for p+1.
Ad (ii). For each k¥ 1<k<n), we have
|T*x P =(T*x, T*x)= p*(PU*x, PU*x)
= (U *PU*x, U"x)
= p*(PU" *PU*x, U™x)
=Tz, Urx)
=p(PU"z, U"x)
=p| Uz |'=pllx|.
Hence | T*z||=+ p .
Ad (iii). Since T"*/2=0 by (i), we have
(Tx, T'x)= p*(PUx, U'x)
= (U 'PU, U"x)
=p(PU" PUz, U"x)
=(T"**Jx, Urx)=0,
for every ¢ and j such as 0<7<i<n.

Ad (iv). It is clear that { is invariant under 7. Therefore it
suffices to prove that the vectors z, Tz, - - -, T"x are orthogonal to Ta,
where a is a vector in § which is orthogonal to Q.

For each k(1<k<n), we have

(Ta, T*x)=(oPUa, pPU*x)
=p*(PUa, Utx)
= (U *PUa, U™x)
=(Tr~**1q, Urx)
=p(PU" **q, Ux)
:p(Un—kHa, Unx)
= p(a, U*'x)
=po(a, PU* 'x)
=(a, T* 'x)=0.
This shows that Ta is orthogonal to Tz, ..., T"x. At this end, we
shall show that Ta is orthogonal to x. Now, we have
| T* Uz | = p|| PU* U
=p||Pz||=plx|=p.
As ||z||=||Urx||=1, by (i) we have T*"+*rx=0. Therefore
T*('n+1)Unx=pPU*(n+l)Unw
=pPU*x= T*x=0.
Hence we have finally
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(Ta, x)=(a, T*x)=0.
This completes the proof.
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