92. On the Index of Hypoelliptic Pseudo-differential Operators on R^{n}

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Comm. by Kinjirô Kunugi, m. J. A., June 2, 1972)

§0. Introduction. The purpose of this paper is to prove that the index of a system P of pseudo-differential operators on R^{n} vanishes, if the symbol $\sigma(P)(x, \xi)$ is slowly varying in the sense of Grushin [1] and satisfies the condition which is a modification of Hörmander's condition for the existence of parametrix (cf. Hörmander [3] and Šubin [8]).

We shall denote by $S_{\rho, \delta}^{m}, 0 \leqq \delta<\rho \leqq 1,-\infty<m<\infty$, the set of all C^{∞}-symbols $p(x, \xi)$ defined in $R_{x}^{n} \times R_{\xi}^{n}$, which satisfy for multi-indices $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$,

$$
\begin{equation*}
\left|p_{(\alpha)}^{(\beta)}(x, \xi)\right| \leqq C_{\alpha, \beta}(1+|\xi|)^{m+\bar{\delta}|\alpha|-\rho|\beta|} \tag{0.1}
\end{equation*}
$$

for some constants $C_{\alpha, \beta}$, where $p_{(\alpha)}^{(\beta)}(x, \xi)=D_{x}^{\alpha} \partial_{\xi}^{\beta} p(x, \xi), D_{x}^{\alpha}=\left(-i \partial / \partial x_{1}\right)^{\alpha_{1}}$ $\cdots\left(-i \partial / \partial x_{n}\right)^{\alpha_{n}}, \partial_{\xi}^{\beta}=\left(\partial / \partial \xi_{1}\right)^{\beta_{1}} \cdots\left(\partial / \partial \xi_{n}\right)^{\beta n}$. We set $S_{\rho, \delta}^{\infty}=\bigcup_{m} S_{\rho, \delta}^{m}$ and $S_{\rho, \delta}^{-\infty}$ $=\bigcap_{m} S_{\rho, \delta}^{m}$. For a symbol $p(x, \xi) \in S_{\rho, \delta}^{m}$ we define a pseudo-differential operator $p\left(X, D_{x}\right)$ by

$$
\begin{equation*}
p\left(X, D_{x}\right) u(x)=(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi \tag{0.2}
\end{equation*}
$$

where $\hat{u}(\xi)$ denotes the Fourier transform of a rapidly decreasing function $u(x)$ defined by $\hat{u}(\xi)=\int e^{-i x \cdot \xi} u(x) d x$.

We say that a symbol $p(x, \xi)\left(\in S_{\rho, \delta}^{m}\right)$ is slowly varying, if the estimate (0.1) holds for a bounded function $C_{\alpha, \beta}(x)$ such that $C_{\alpha, \beta}(x) \rightarrow 0$ as $|x| \rightarrow \infty$ in case $\alpha \neq 0$ (cf. Grushin [1], p. 206).

Our main theorem is stated as follows:
Main theorem. $\operatorname{Let} p(x, \xi)=\left(p_{j k}(x, \xi)\right)$ be an $l \times l$ matrix of symbols $p_{j k}(x, \xi)$ of class $S_{\rho, \dot{\delta}}^{m}, m>0$, which are slowly varying. Assume that there exist positive constants c_{0}, c_{1} and $0<\tau \leqq 1$ such that $(p(x, \xi)-\zeta I)^{-1}$ exists on

$$
\Xi_{\xi}=\left\{\zeta \in \boldsymbol{C} ; \operatorname{dis}(\zeta,(-\infty, 0]) \leqq c_{0}\left(1+|\xi|^{r m}\right\}\right.
$$

and the estimate of the form
(0.3)

$$
\left\|p_{(\alpha)}^{(\beta)}(x, \xi)(p(x, \xi)-\zeta I)^{-1}\right\| \leqq C_{\alpha, \beta}(x)(1+|\xi|)^{\delta|\alpha|-\rho|\beta|}
$$

holds uniformly on Ξ_{ξ}, where $\|\cdot\|$ denotes a matrix norm, and $C_{\alpha, \beta}(x)$ is a bounded function which tends to zero as $|x| \rightarrow \infty$ in case $\alpha \neq 0$. Then the operator $P=p\left(X, D_{x}\right)$ as the map from $L^{2}=L^{2}\left(R^{n}\right)$ into itself with the domain $\mathscr{D}(P)=\left\{u \in L^{2} ; P u \in L^{2}\right\}$ is Fredholm type and we have
index $P \equiv \operatorname{dim}$ ker P - $\operatorname{codim} \mathcal{R e}_{e} P=0$.
Remark. We may assume the condition (0.3) only in $\{(x, \xi)$; $|\xi| \geqq \gamma(x)\}$ for a continuous function $\gamma(x)$ ($\geqq 0$) with compact support. The reason will be explained after the proof of main theorem in § 2. For example, the symbol

$$
p(x, \xi)=|\xi|^{2}+\left\{|x|^{2}\left(1+|x|^{2}\right)^{-1}-n\left(1+|x|^{2}\right)^{-1 / 2}+|x|^{2}\left(1+|x|^{2}\right)^{-3 / 2}\right\}
$$

satisfies (0.3) in $\{(x, \xi) ;|\xi| \geqq \gamma(x)\}$ for a continuous function $\gamma(x)$ with compact support such that $\gamma(x)>0$ in $\{x ;|x| \leqq R\}$ for a large $R>0$, and is slowly varying. Then we have "index $p\left(X, D_{x}\right)=0$ ", but the dimension of the null space of $p\left(X, D_{x}\right)$ does not vanish, since

$$
p\left(X, D_{x}\right) \exp \left(-\sqrt{1+|x|^{2}}\right)=0
$$

For the proof we shall apply Proposition 2.1 in Hörmander [4] to a one parameter family $\left\{P_{z}\right\}_{z \in \boldsymbol{C}}$ of complex powers P_{z} for P which has been constructed in Kumano-go and Tsutsumi [6], and shows "index P $=\operatorname{index} P_{z}(\Re e z \geqq 0)=$ index $I=0$ ". In the present paper only the sketch of the proof is given and the detailed description will be given there.
§1. Preliminary lemmas. Let $H_{s},-\infty<s<\infty$, be the Sobolev space with the s-norm $\|u\|_{s}^{2}=(2 \pi)^{-n} \int\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} d \xi$.

Proposition 1.1. Let $p_{j}(x, \xi), j=0,1,2, \cdots$, be a sequence of slowly varying symbols of class $S_{\rho, \delta}^{m_{j}}$ such that $m_{j} \downarrow-\infty$ as $j \rightarrow \infty$. Then we can construct a slowly varying symbol $p(x, \xi) \in S_{\rho, \dot{\delta}}^{m_{0}}$ such that

$$
\begin{equation*}
p(x, \xi)-\sum_{j=1}^{N-1} p_{j}(x, \xi) \in S_{\rho, \bar{\delta}}^{m_{N}} \tag{1.1}
\end{equation*}
$$

and is slowly varying for any N (cf. [3]).
Proof. Take C^{∞}-functions $\varphi(\xi)$ and $\psi(x, \xi)$ such that $\varphi(\xi)=0$ $(|\xi| \leqq 1),=1(|\xi| \geqq 2)$ and $\psi(x, \xi)=0(|x|+|\xi| \leqq 1),=1(|x|+|\xi| \geqq 2)$. Then, setting $p(x, \xi)=p_{0}(x, \xi)+\sum_{j=1}^{\infty} \varphi\left(t_{j}^{-1} \xi\right) \psi\left(t_{j}^{-1} x, t_{j}^{-1} \xi\right) p_{j}(x, \xi)$ for an appropriate $t_{j} \uparrow \infty(j \rightarrow \infty)$, we get a required symbol.
Q.E.D.

Let $P=\left(p_{j k}\left(X, D_{x}\right)\right)$ be an $l \times l$ matrix of pseudo-differential operators $p_{j k}\left(X, D_{x}\right)$ of class $S_{\rho, \delta}^{m}$ and \tilde{P}^{*} be the formal adjoint of P in the sense: $(P u, v)=\left(u, \tilde{P}^{*} v\right)$ for $u, v \in H_{\infty}\left(=\bigcap_{s} H_{s}\right)$. Then, by Kumano-go [5], p. 33 and 43, \tilde{P}^{*} belongs to $S_{\rho, \delta}^{m}$ and whose symbol $\sigma\left(\tilde{P}^{*}\right)(x, \xi)=\left(\tilde{p}_{j k}^{*}(x, \xi)\right)$ is defined by

$$
\begin{equation*}
\tilde{p}_{j k}^{*}(x, \xi)=(2 \pi)^{-n} \int\left\{\int e^{-i w \cdot \xi}\langle w\rangle^{-n_{0}}\left\langle D_{\zeta}\right\rangle^{n_{0}} \overline{P_{k j}(x+w, \xi+\zeta)} d w\right\} d \zeta \tag{1.2}
\end{equation*}
$$

($n_{0} \geqq n+1$, any even number).
Taking large n_{0} we can see that $\tilde{p}_{j k}^{*}(x, \xi)$ are slowly varying, if $p_{j k}(x, \xi)$ are so (cf. Grushin [1]).

Proposition 1.2. Let P be an $l \times l$ matrix of pseudo-differential operators of class $S_{\rho, \delta}^{m}$, and let \tilde{P}^{*} be the formal adjoint. Set
(1.3) $\mathscr{D}(P)=\left\{u \in L^{2} ; P u \in L^{2}\right\}, \quad \mathscr{D}\left(\tilde{P}^{*}\right)=\left\{v \in L^{2} ; \tilde{P}^{*} v \in L^{2}\right\}$.

Then for the adjoint operator P^{*} of P we have $P^{*} \subset \tilde{P}^{*}$.

Proof. Let $v \in \mathscr{D}\left(P^{*}\right)$. Since $H_{\infty} \subset \mathscr{D}(P)$, we have $\left(u, \tilde{P}^{*} v\right)=(P u, v)$ $=\left(u, P^{*} v\right)$ for $u \in H_{\infty}$. Then, we have $\tilde{P}^{*} v=P^{*} v \in L^{2}$ which proves $P^{*} \subset \tilde{P}^{*}$.
Q.E.D.

Now for $p(x, \xi) \in S_{\rho, \delta}^{m}$ we introduce semi-norms

$$
\begin{equation*}
|p|_{m, k}=\operatorname{Max}_{|\alpha+\beta| \leq k} \sup _{x, \xi}\left\{\left|p_{(\alpha)}^{(\beta)}(x, \xi)\right|(1+|\xi|)^{-(m+\delta|\alpha|-\rho|\beta|)}\right\} \tag{1.4}
\end{equation*}
$$

$$
(k=0,1,2, \cdots) .
$$

Then $S_{\rho, \delta}^{m}$ makes a Fréchet space, and for any $p(x, \xi) \in S_{\rho, \delta}^{0}$ we have

$$
\begin{equation*}
\left\|p\left(X, D_{x}\right) u\right\|_{0} \leqq C_{0}|p|_{0, k_{0}}\|u\|_{0}, \quad u \in L^{2} \tag{1.5}
\end{equation*}
$$

where C_{0} and k_{0} are constants independent of $p(x, \xi)$ (cf. [5], p. 48).
Lemma 1.3. Let $\left\{p_{s}(x, \xi)\right\}_{-s_{0} \leq s s 0}\left(s_{0}>0\right)$ makes a bounded set in $S_{\rho, \delta}^{0}$. Assume that

$$
\begin{equation*}
p_{s}(x, \xi) \rightarrow p_{0}(x, \xi) \quad \text { on } \quad R_{x}^{n} \times K(s \uparrow 0) \tag{1.6}
\end{equation*}
$$

uniformly for any compact set K of R_{ξ}^{n}. Then we have for any $u \in L^{2}$

$$
\begin{equation*}
p_{s}\left(x, D_{x}\right) u \rightarrow p_{0}\left(X, D_{x}\right) u \quad \text { in } \quad L^{2}(s \uparrow 0) \tag{1.7}
\end{equation*}
$$

Proof. Take a C^{∞}-symbol $\Phi(\xi)$ such that $0 \leqq \Phi(\xi) \leqq 1, \Phi(\xi)=1$ $(|\xi| \leqq 1),=0(|\xi| \geqq 2)$, and set $\Phi_{s}(\xi)=\Phi(\varepsilon \xi)$. Then $\left\{\Phi_{s}(\xi)\right\}_{0 \ll \leq 1}$ makes a bounded set in $S_{1,0}^{0} \subset S_{\rho, \delta}^{0}$, and for any fixed $\varepsilon_{0}>0$
(1.8)

$$
\left(p_{s}(x, \xi)-p_{0}(x, \xi)\right) \Phi_{\varepsilon_{0}}(\xi) \rightarrow 0 \quad \text { in } \quad S_{\rho, \delta}^{0}
$$

Setting $P_{s}=p_{s}\left(X, D_{x}\right)$ we write

$$
\left(P_{s}-P_{0}\right) u=\left(P_{s}-P_{0}\right) \Phi_{c}\left(D_{x}\right) u+\left(P_{s}-P_{0}\right)\left(1-\Phi_{c}\left(D_{x}\right)\right) u
$$

Then by (1.5) we have

$$
\begin{equation*}
\left\|\left(P_{s}-P_{0}\right)\left(1-\Phi_{s}\left(D_{x}\right)\right) u\right\|_{0}^{2} \leqq C\left\|\left(1-\Phi_{\epsilon}\left(D_{x}\right)\right) u\right\|_{0}^{2} \tag{1.9}
\end{equation*}
$$

On the other hand for a fixed $\varepsilon_{0}>0$ we have by (1.5) and (1.8)
(1.10) $\quad\left\|\left(P_{s}-P_{0}\right) \Phi_{c_{0}}\left(D_{x}\right) u\right\|_{0} \leqq C_{0} \mid\left(P_{s}-P_{0}\right) \Phi_{s_{0} \mid 0, k_{0}}\|u\|_{0} \rightarrow 0(s \uparrow 0)$.

From (1.9) and (1.10) we get (1.7).
Q.E.D.

Lemma 1.4. Let $p_{z}(x, \xi), z \in \Omega$, be a subset of $S_{\rho, \delta}^{0}$ and an analytic function of z in the topology of $S_{\rho, \delta}^{0}$, where Ω is an open set of C. Then $p_{z}\left(X, D_{x}\right) u$ is an analytic function of z in the L^{2}-topology.

Proof is omitted.
Definition 1.5. For an $l \times l$ matrix $P=p\left(X, D_{x}\right) \in S_{\rho, \delta}^{m}, m>0$, we say that $\left\{P_{z}\right\}_{z \in C}\left(\subset S_{\rho, \delta}^{\infty}\right)$ is a one parameter family of complex powers P_{z} for P, if $\left\{P_{z}\right\}_{z \in C}$ satisfies the following:
i) For a monotone increasing function $m(s)$ such that $m(s) \rightarrow-\infty$ $(s \rightarrow-\infty), m(0)=0, m(s) \rightarrow \infty(s \rightarrow \infty)$ we have $P_{z} \in S_{\rho, i}^{m}(\Re t e z)$.
ii) $P_{0}=I$ (identity operator), $P_{1}=P$ (original operator).
iii) For any real $s_{0} \sigma\left(P_{z}\right)(x, \xi)$ is an analytic function of $z\left(\mathfrak{R e} z<s_{0}\right)$ in the topology of $S_{\rho, \delta}^{m\left(s_{0}\right)}$.
vi) For any $s_{0}>0\left\{\sigma\left(P_{s}\right)(x, \xi)\right\}_{-s_{0} \leq s \leq 0}$ makes a bounded set in $S_{\rho, \delta}^{0}$ and (1.11)

$$
\sigma\left(P_{s}\right)(x, \xi) \rightarrow I \quad \text { on } \quad R_{x}^{n} \times K(s \uparrow 0)
$$

uniformly for any compact set K of R_{ξ}^{n}.
v) $P_{z_{1}} P_{z_{2}}-P_{z_{1}+z_{2}} \in S_{\rho, \delta}^{-\infty}$ for any $z_{1}, z_{2} \in C$ in the sense:

$$
\sigma\left(P_{z_{1}} P_{z_{2}}-P_{z_{1}+z_{2}}\right)(x, \xi)
$$

is an analytic functions of z_{1} and z_{2} in the topology of $S_{\rho, \delta}^{s_{0}}$ for any real s_{0}.

Then we have
Theorem 1.6. Let $P \in S_{\rho, \delta}^{m}$ for $m>0$. Assume that there exists a one parameter family $\left\{P_{z}\right\}_{z \in C}$ of complex powers for P. Then we have, for any $z_{0} \in C, \tilde{P}_{z_{0}}^{*}=P_{z_{0}}^{*}$ as the map of L^{2} into itself.

Proof. By Proposition 1.2 we have only to prove
(1.12) $\quad\left(P_{z_{0}} u, v\right)=\left(u, \tilde{P}_{z_{0}}^{*} v\right)$ for $u \in \mathscr{D}\left(P_{z_{0}}\right), \quad v \in \mathscr{D}\left(\tilde{P}_{z_{0}}^{*}\right)$.

By i) we have $P_{z} u \in H_{-m(\mathfrak{R e} z)}$ for $u \in \mathscr{D}\left(P_{z_{0}}\right)$, so we have for a large N

$$
\begin{align*}
\left(P_{z} u, \tilde{P}_{z_{0}}^{*} v\right)= & \left(P_{z_{0}} P_{z} u, v\right)=\left(P_{z} P_{z_{0}} u, v\right) \\
& +\left(\left(P_{z_{0}} P_{z}-P_{z} P_{z_{0}} u, v\right), \quad u \in \mathscr{D}\left(P_{z_{0}}\right), \quad v \in \mathscr{D}\left(\tilde{P}_{z_{0}}^{*}\right)\right. \tag{1.13}
\end{align*}
$$

($\mathfrak{R} z<-N$).
From Lemmas 1.3-1.4 and iii)-iv) we have ($P_{z} u, \tilde{P}_{z_{0}}^{*} v$) is analytic in z when $\mathfrak{R e} z<0$ and $\lim _{s \rightarrow-0}\left(P_{s} u, \tilde{P}_{z_{0}}^{*} v\right)=\left(u, \tilde{P}_{z_{0}}^{*} v\right)$. Since $P_{z_{0}} u \in L^{2}$, we also have that $\left(P_{z} P_{z_{0}} u, v\right)$ is analytic in z when $\mathfrak{R e} z<0$ and $\lim _{s \rightarrow-0}\left(P_{s} P_{z_{0}} u, v\right)$ $=\left(P_{z_{0}} u, v\right)$. Setting $s_{0}=0$ in v) and writing

$$
P_{z_{0}} P_{z}-P_{z} P_{z_{0}}=\left(P_{z_{0}} P_{z}-P_{z_{0}+z}\right)+\left(P_{z_{0}+z}-P_{z_{0}} P_{z}\right),
$$

we can see that ($\left.\left(P_{z_{0}} P_{z}-P_{z} P_{z_{0}}\right) u, v\right)$ is analytic in z and

$$
\lim _{s \rightarrow-0}\left(\left(P_{z_{0}} P_{s}-P_{s} P_{z_{0}}\right) u, v\right)=0
$$

Then letting $z \rightarrow-0$ on the real line in (1.13), we get (1.12). This completes the proof.
Q.E.D.
§2. Proof of main theorem. We exhibit a theorem given in [6].
Theorem 2.1. Let $P=p\left(X, D_{x}\right)$ be an $l \times l$ matrix of pseudodifferential operators whose symbols satisfy the condition of main theorem. Then we can construct a one parameter family $\left\{P_{z}\right\}_{z \in C}$ of complex powers for P such that $m(s)=\tau m s$ for $s<0,=m s$ for $s \geqq 0$, $\sigma\left(P_{z}\right)(x, \xi)$ are slowly varying, and $P_{z_{1}} P_{z_{2}}-P_{z_{1}+z_{2}}$ are compact from $H_{s_{1}}$ into $H_{s_{2}}$ for any real s_{1}, s_{2}.

Sketch of the proof. We first construct a parametrix $r\left(\zeta ; X, D_{x}\right)$ $=\sum_{j=0}^{\infty} q_{j}\left(\zeta ; X, D_{x}\right) \in S_{\rho, \delta}^{-\tau m}$ of $(P-\zeta I)$ in $\Xi_{0}=\left\{\zeta \in C\right.$; dis $\left.(\zeta,(-\infty, 0]) \leqq c_{0}\right\}$ by the usual way. Then we note that $q_{0}(\zeta ; x, \xi)=(P(x, \xi)-\zeta I)^{-1}$ and, for $q_{j}(\zeta ; x, \xi)\left(\in S_{\rho, \delta}^{-\tau m-j(\rho-\delta)}\right), j=1,2, \cdots$, we can take bounded functions $C_{\alpha, \beta}(x)$ as $C_{\alpha, \beta}$ of (0.1) such that $C_{\alpha, \beta}(x) \rightarrow 0(|x| \rightarrow \infty)$ for any α, β. This fact derives the last statement of Theorem 2.1. According to Hayakawa and Kumano-go [2] consider the Dunford integral

$$
\begin{equation*}
p_{z}(x, \xi)=(2 \pi i)^{-1} \int_{\Gamma} \zeta^{z} r(\zeta ; x, \xi) d \zeta \quad(\text { Re } z<0) \tag{2.1}
\end{equation*}
$$

where Γ is an oriented curve defined by $\left\{\zeta \in \boldsymbol{C}\right.$; dis $\left.(\zeta,(-\infty, 0]) \leqq c_{0} / 2\right\}$. Then $p_{z}(x, \xi)$ has the analytic continuation to the whole z-plane. We can see also

$$
\begin{array}{r}
\int_{\Gamma} \zeta^{z}(p(x, \xi)-\zeta I)^{-1} d \zeta=p(x, \xi)^{z}, \quad \int_{\Gamma} \zeta^{z} q_{j}(\zeta ; x, \xi) d \zeta=0, \quad j=1,2, \cdots \tag{2.2}\\
(z=0,1)
\end{array}
$$

so that we have $p_{0}(x, \xi)=1$ and $p_{1}(x, \xi)=p(x, \xi)$. For the group property and the continuity in the $S_{\rho, \sigma^{s}}^{s}$-topology we have to do careful calculation which is omitted here. For the scalar case we can see the concrete form in Nagase and Shinkai [7].

We use Proposition 2.1 of Hörmander [4] in the following modified form :

Lemma 2.2. Let $\left\{P_{t}\right\}_{0 \leq t \leq 1}$ be the family of an $l \times l$ matrix of pseudo-differential operators of class $S_{\rho, \delta}^{s_{0}}$ for some s_{0} such that $\tilde{P}_{t}^{*}=P_{t}^{*}$ as the operators of L^{2} into itself. Suppose that $\sigma\left(P_{t}\right)(x, \xi)$ and $\sigma\left(\tilde{P}_{t}^{*}\right)(x, \xi)$ are continuous in the $S_{\rho, i-}^{s_{0}}$ topology, and that there exists a family $\{Q\}_{0 \leq t \leq 1}$ of parametrices $Q_{t}\left(\in S_{\rho, \delta}^{0}\right)$ for P_{t} such that Q_{t} is strongly continuous in the L^{2}-topology, $\left\{\sigma\left(Q_{t}\right)(x, \xi)\right\}_{0 \leq t \leq 1}$ is bounded in $S_{\rho, \mathrm{\delta}}^{0}$ and

$$
\begin{equation*}
Q_{t} P_{t} \subset I+K_{t}, \quad P_{t} Q_{t} \subset I+K_{t}^{\prime} \tag{2.3}
\end{equation*}
$$

where K_{t} and K_{t}^{\prime} are compact operators in L^{2} and continuous in the uniform L^{2}-topology. Then P_{t} is Fredholm type and
(2.4) index $P_{t}=\operatorname{dim} \operatorname{ker} P_{t}-\operatorname{codim} \mathcal{R}_{e} P_{t}=$ Const. on [0, 1].

Proof is omitted, but we only note that the graphs:

$$
G=\left\{\left(t, u, P_{t} u\right) ; u \in \mathscr{D}\left(P_{t}\right), t \in[0,1]\right\}
$$

and

$$
G^{*}=\left\{\left(t, v, \tilde{P}_{t}^{*} v\right) ; v \in \mathscr{D}\left(\tilde{P}_{t}^{*}\right), t \in[0,1]\right\}
$$

are closed in $[0,1] \times L^{2} \times L^{2}$.
Proof of main theorem. By means of Theorem 2.1 we have a one parameter family $\left\{P_{z}\right\}_{z \in C}$ of complex powers P_{z} for P. We consider $\left\{P_{t}\right\}_{0 \leq t \leq 1}$. Then we have P_{-t} as Q_{t} in Lemma 2.2. Then we have by (2.4) "index $P=$ index $P_{1}=$ index $P_{0}=$ index $I=0$ ". Q.E.D.

Remark for main theorem. When $p(x, \xi)$ satisfies the condition (0.3) in $\{(x, \xi) ;|\xi| \geqq \gamma(x)\}$ we take a C_{0}^{∞}-function $a(x)(\geqq 0)$ which is equal to 1 on supp γ. Then $p_{0}(x, \xi)=p(x, \xi)+\lambda_{0} a(x) I$ satisfies (0.3) in $R_{x}^{n} \times R_{\xi}^{n}$ for a fixed $\lambda_{0}>0$. Hence we have index $p_{0}\left(X, D_{x}\right)=0$. Set $P_{t}=p_{0}\left(X, D_{x}\right)$ $-t \lambda_{0} a(x) I, 0 \leqq t \leqq 1$, and $Q_{t}=Q$ where $Q\left(\in S_{\rho, \delta}^{-\tau m}\right)$ is the parametrix for $p_{0}\left(X, D_{x}\right)$. Then $P_{0}=p_{0}\left(X, D_{x}\right), P_{1}=p\left(X, D_{x}\right)$, and, noting that $Q a(x)$ and $a(x) Q$ are compact, we see that we can apply Lemma 2.2 to $\left\{\boldsymbol{P}_{t}\right\}_{0 \leq t \leq 1}$. Hence $p\left(X, D_{x}\right)$ is Fredholm type and "index $p\left(X, D_{x}\right)$ $=\operatorname{index} p_{0}\left(X, D_{x}\right)=0 "$.

References

[1] V. V. Grushin: Pseudo-differential operators on R^{n} with bounded symbols. Functional Anal. Appl., 4, 202-212 (1970).
[2] K. Hayakawa and H. Kumano-go: Complex powers of a system of pseudodifferential operators. Proc. Japan Acad., 47, 359-364 (1971).
[3] L. Hörmander: Pseudo-differential operators and hypoelliptic equations. Proc. Symposium on Singular Integrals. Amer. Math. Soc., 10, 138-183 (1967).
[4] -: On the index of pseudo-differential operators (to appear).
[5] H. Kumano-go: Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo, 17, 31-50 (1970).
[6] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudodifferential operators with applications (to appear in Osaka Math. J.).
[7] M. Nagase and K. Shinkai: Complex powers of non-elliptic operators. Proc. Japan Acad., 46, 779-783 (1970).
[8] M. A. Šubin: Pseudo-differential operators in R^{n}. Soviet Math. Dokl., 12, 147-151 (1971).

