92. On the Index of Hypoelliptic Pseudo-differential Operators on Rⁿ

By Hitoshi KUMANO-GO

Department of Mathematics, Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., June 2, 1972)

§0. Introduction. The purpose of this paper is to prove that the index of a system P of pseudo-differential operators on \mathbb{R}^n vanishes, if the symbol $\sigma(P)(x,\xi)$ is slowly varying in the sense of Grushin [1] and satisfies the condition which is a modification of Hörmander's condition for the existence of parametrix (cf. Hörmander [3] and Šubin [8]).

We shall denote by $S_{\rho,\delta}^m$, $0 \le \delta < \rho \le 1$, $-\infty < m < \infty$, the set of all C^{∞} -symbols $p(x,\xi)$ defined in $R_x^n \times R_{\xi}^n$, which satisfy for multi-indices $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$,

 $(0.1) |p_{(\alpha)}^{(\beta)}(x,\xi)| \leq C_{\alpha,\beta} (1+|\xi|)^{m+\delta|\alpha|-\rho|\beta|}$

for some constants $C_{\alpha,\beta}$, where $p_{\alpha,\beta}^{(\beta)}(x,\xi) = D_x^{\alpha}\partial_{\xi}^{\beta}p(x,\xi)$, $D_x^{\alpha} = (-i\partial/\partial x_1)^{\alpha_1}$ $\cdots (-i\partial/\partial x_n)^{\alpha_n}$, $\partial_{\xi}^{\beta} = (\partial/\partial \xi_1)^{\beta_1} \cdots (\partial/\partial \xi_n)^{\beta_n}$. We set $S_{\rho,\delta}^{\infty} = \bigcup_m S_{\rho,\delta}^m$ and $S_{\rho,\delta}^{-\infty} = \bigcap_m S_{\rho,\delta}^m$. For a symbol $p(x,\xi) \in S_{\rho,\delta}^m$ we define a pseudo-differential operator $p(X, D_x)$ by

(0.2)
$$p(X, D_x)u(x) = (2\pi)^{-n} \int e^{ix \cdot \xi} p(x, \xi) \hat{u}(\xi) d\xi,$$

where $\hat{u}(\xi)$ denotes the Fourier transform of a rapidly decreasing function u(x) defined by $\hat{u}(\xi) = \int e^{-ix \cdot \xi} u(x) dx$.

We say that a symbol $p(x,\xi) (\in S_{\rho,\delta}^m)$ is slowly varying, if the estimate (0.1) holds for a bounded function $C_{\alpha,\beta}(x)$ such that $C_{\alpha,\beta}(x) \to 0$ as $|x| \to \infty$ in case $\alpha \neq 0$ (cf. Grushin [1], p. 206).

Our main theorem is stated as follows:

Main theorem. Let $p(x, \xi) = (p_{jk}(x, \xi))$ be an $l \times l$ matrix of symbols $p_{jk}(x, \xi)$ of class $S_{\rho,\delta}^m, m > 0$, which are slowly varying. Assume that there exist positive constants c_0, c_1 and $0 < \tau \leq 1$ such that $(p(x, \xi) - \zeta I)^{-1}$ exists on

 $\Xi_{\xi} = \{ \zeta \in C; \operatorname{dis} (\zeta, (-\infty, 0]) \leq c_0 (1 + |\xi|)^{\tau m} \}$

and the estimate of the form

(0.3) $\|p_{(\alpha)}^{(\beta)}(x,\xi)(p(x,\xi)-\zeta I)^{-1}\| \leq C_{\alpha,\beta}(x)(1+|\xi|)^{\delta|\alpha|-\rho|\beta|}$ holds uniformly on Ξ_{ξ} , where $\|\cdot\|$ denotes a matrix norm, and $C_{\alpha,\beta}(x)$ is a bounded function which tends to zero as $|x| \to \infty$ in case $\alpha \neq 0$. Then the operator $P = p(X, D_x)$ as the map from $L^2 = L^2(\mathbb{R}^n)$ into itself with the domain $\mathcal{D}(P) = \{u \in L^2; Pu \in L^2\}$ is Fredholm type and we have No. 6]

Index of Hypoelliptic Operators on \mathbb{R}^n

(0.4) $\operatorname{index} P \equiv \dim \ker P - \operatorname{codim} \mathcal{R}_e P = 0.$

Remark. We may assume the condition (0.3) only in $\{(x, \xi); |\xi| \ge \gamma(x)\}$ for a continuous function $\gamma(x)$ (≥ 0) with compact support. The reason will be explained after the proof of main theorem in §2. For example, the symbol

 $\begin{array}{l} p(x,\xi) = |\xi|^2 + \{|x|^2(1+|x|^2)^{-1} - n(1+|x|^2)^{-1/2} + |x|^2(1+|x|^2)^{-3/2}\}\\ \text{satisfies (0.3) in } \{(x,\xi); |\xi| \ge \gamma(x)\} \text{ for a continuous function } \gamma(x) \text{ with compact support such that } \gamma(x) > 0 \text{ in } \{x; |x| \le R\} \text{ for a large } R > 0, \text{ and is slowly varying. Then we have "index } p(X, D_x) = 0", \text{ but the dimension of the null space of } p(X, D_x) \text{ does not vanish, since} \end{array}$

 $p(X, D_x) \exp(-\sqrt{1+|x|^2}) = 0.$

For the proof we shall apply Proposition 2.1 in Hörmander [4] to a one parameter family $\{P_z\}_{z\in C}$ of complex powers P_z for P which has been constructed in Kumano-go and Tsutsumi [6], and shows "index P= index P_z ($\Re e z \ge 0$)=index I=0". In the present paper only the sketch of the proof is given and the detailed description will be given there.

§1. Preliminary lemmas. Let H_s , $-\infty < s < \infty$, be the Sobolev space with the s-norm $||u||_s^2 = (2\pi)^{-n} \int (1+|\xi|^2)^s |\hat{u}(\xi)|^2 d\xi$.

Proposition 1.1. Let $p_j(x,\xi)$, j=0,1,2,..., be a sequence of slowly varying symbols of class $S_{\rho,\delta}^{m_j}$ such that $m_j \downarrow -\infty$ as $j \to \infty$. Then we can construct a slowly varying symbol $p(x,\xi) \in S_{\rho,\delta}^{m_0}$ such that

(1.1)
$$p(x,\xi) - \sum_{j=1}^{N-1} p_j(x,\xi) \in S^{m_N}_{\rho,\delta}$$

and is slowly varying for any N (cf. [3]).

Proof. Take C^{∞} -functions $\varphi(\xi)$ and $\psi(x,\xi)$ such that $\varphi(\xi)=0$ $(|\xi|\leq 1), =1(|\xi|\geq 2)$ and $\psi(x,\xi)=0(|x|+|\xi|\leq 1), =1(|x|+|\xi|\geq 2)$. Then, setting $p(x,\xi)=p_0(x,\xi)+\sum_{j=1}^{\infty}\varphi(t_j^{-1}\xi)\psi(t_j^{-1}x,t_j^{-1}\xi)p_j(x,\xi)$ for an appropriate $t_j \uparrow \infty(j \to \infty)$, we get a required symbol. Q.E.D.

Let $P = (p_{jk}(X, D_x))$ be an $l \times l$ matrix of pseudo-differential operators $p_{jk}(X, D_x)$ of class $S_{\rho,\delta}^m$ and \tilde{P}^* be the formal adjoint of Pin the sense: $(Pu, v) = (u, \tilde{P}^*v)$ for $u, v \in H_{\omega}(= \bigcap_s H_s)$. Then, by Kumano-go [5], p. 33 and 43, \tilde{P}^* belongs to $S_{\rho,\delta}^m$ and whose symbol $\sigma(\tilde{P}^*)(x, \xi) = (\tilde{p}_{jk}^*(x, \xi))$ is defined by

(1.2)
$$\tilde{p}_{jk}^*(x,\xi) = (2\pi)^{-n} \int \left\{ \int e^{-iw\cdot\zeta} \langle w \rangle^{-n_0} \langle D_{\zeta} \rangle^{n_0} \overline{P_{kj}(x+w,\xi+\zeta)} dw \right\} d\zeta$$

 $(n_0 \ge n+1, \text{ any even number}).$

Taking large n_0 we can see that $\tilde{p}_{jk}^*(x,\xi)$ are slowly varying, if $p_{jk}(x,\xi)$ are so (cf. Grushin [1]).

Proposition 1.2. Let P be an $l \times l$ matrix of pseudo-differential operators of class $S_{\rho,s}^m$, and let \tilde{P}^* be the formal adjoint. Set (1.3) $\mathcal{D}(P) = \{u \in L^2; Pu \in L^2\}, \quad \mathcal{D}(\tilde{P}^*) = \{v \in L^2; \tilde{P}^*v \in L^2\}.$ Then for the adjoint operator P^* of P we have $P^* \subset \tilde{P}^*$. **Proof.** Let $v \in \mathcal{D}(P^*)$. Since $H_{\infty} \subset \mathcal{D}(P)$, we have $(u, \tilde{P}^*v) = (Pu, v) = (u, P^*v)$ for $u \in H_{\infty}$. Then, we have $\tilde{P}^*v = P^*v \in L^2$ which proves $P^* \subset \tilde{P}^*$. Q.E.D.

Now for $p(x, \xi) \in S_{a,b}^m$ we introduce semi-norms

(1.4)
$$|p|_{m,k} = \underset{|\alpha+\beta| \leq k}{\operatorname{Max}} \sup_{x,\xi} \{ |p_{(\alpha)}^{(\beta)}(x,\xi)| (1+|\xi|)^{-(m+\delta|\alpha|-\rho|\beta|)} \} \\ (k=0,1,2,\cdots).$$

Then $S^m_{\rho,\delta}$ makes a Fréchet space, and for any $p(x,\xi) \in S^0_{\rho,\delta}$ we have (1.5) $\|p(X,D_x)u\|_0 \leq C_0 \|p\|_{0,k_0} \|u\|_0, \qquad u \in L^2,$

where C_0 and k_0 are constants independent of $p(x, \xi)$ (cf. [5], p. 48).

Lemma 1.3. Let $\{p_s(x,\xi)\}_{-s_0 \leq s \leq 0}$ $(s_0 > 0)$ makes a bounded set in $S^0_{\varrho,\delta}$. Assume that

(1.6) $p_s(x,\xi) \rightarrow p_0(x,\xi) \quad on \quad R^n_x \times K \ (s \uparrow 0)$

uniformly for any compact set K of R_{ε}^{n} . Then we have for any $u \in L^{2}$ (1.7) $p_{s}(x, D_{x})u \rightarrow p_{0}(X, D_{x})u$ in $L^{2}(s \uparrow 0)$.

Proof. Take a C^{∞} -symbol $\Phi(\xi)$ such that $0 \leq \Phi(\xi) \leq 1$, $\Phi(\xi) = 1$ $(|\xi| \leq 1), =0(|\xi| \geq 2)$, and set $\Phi_{\epsilon}(\xi) = \Phi(\epsilon\xi)$. Then $\{\Phi_{\epsilon}(\xi)\}_{0 < \epsilon \leq 1}$ makes a bounded set in $S^{0}_{1,0} \subset S^{0}_{\rho,\delta}$, and for any fixed $\epsilon_{0} > 0$

(1.8) $(p_s(x,\xi) - p_0(x,\xi))\Phi_{\iota_0}(\xi) \rightarrow 0$ in $S^0_{\rho,\delta}$. Setting $P_s = p_s(X, D_x)$ we write

 $(P_s - P_0)u = (P_s - P_0)\Phi_*(D_x)u + (P_s - P_0)(1 - \Phi_*(D_x))u.$ Then by (1.5) we have

(1.9)
$$\begin{aligned} \|(P_{s}-P_{0})(1-\Phi_{\epsilon}(D_{x}))u\|_{0}^{2} &\leq C \|(1-\Phi_{\epsilon}(D_{x}))u\|_{0}^{2} \\ &\leq C' \int |(1-\Phi_{\epsilon}(\xi))\hat{u}(\xi)|^{2} d\xi \leq C' \int_{|\xi| \geq \epsilon^{-1}} |\hat{u}(\xi)|^{2} d\xi \to 0 (\varepsilon \downarrow 0) \end{aligned}$$

On the other hand for a fixed $\varepsilon_0 > 0$ we have by (1.5) and (1.8) (1.10) $||(P_s - P_0)\Phi_{\varepsilon_0}(D_x)u||_0 \leq C_0 |(P_s - P_0)\Phi_{\varepsilon_0}|_{0,k_0} ||u||_0 \rightarrow 0 (s \uparrow 0).$ From (1.9) and (1.10) we get (1.7). Q.E.D.

Lemma 1.4. Let $p_z(x, \xi), z \in \Omega$, be a subset of $S^0_{\rho,\delta}$ and an analytic function of z in the topology of $S^0_{\rho,\delta}$, where Ω is an open set of C. Then $p_z(X, D_x)u$ is an analytic function of z in the L²-topology.

Proof is omitted.

Definition 1.5. For an $l \times l$ matrix $P = p(X, D_x) \in S_{\rho,\delta}^m, m > 0$, we say that $\{P_z\}_{z \in C} (\subset S_{\rho,\delta}^{\infty})$ is a one parameter family of complex powers P_z for P, if $\{P_z\}_{z \in C}$ satisfies the following:

i) For a monotone increasing function m(s) such that $m(s) \to -\infty$ $(s \to -\infty), m(0) = 0, m(s) \to \infty (s \to \infty)$ we have $P_z \in S_{\rho,\delta}^{m(\mathfrak{M} \mathfrak{c} z)}$.

ii) $P_0 = I$ (identity operator), $P_1 = P$ (original operator).

iii) For any real $s_0 \sigma(P_z)(x,\xi)$ is an analytic function of z (Re $z < s_0$) in the topology of $S_{a,\delta}^{m(s_0)}$.

vi) For any $s_0 > 0 \{ \sigma(P_s)(x, \xi) \}_{-s_0 \leq s \leq 0}$ makes a bounded set in $S^0_{\rho,\delta}$ and (1.11) $\sigma(P_s)(x, \xi) \rightarrow I$ on $R^n_x \times K$ $(s \uparrow 0)$ uniformly for any compact set K of R^n_{ξ} .

v)
$$P_{z_1}P_{z_2} - P_{z_1+z_2} \in S^{-\infty}_{\rho,\delta}$$
 for any $z_1, z_2 \in C$ in the sense:
 $\sigma(P_{z_1}P_{z_2} - P_{z_1+z_2})(x,\xi)$

is an analytic functions of z_1 and z_2 in the topology of $S^{s_0}_{\rho,\delta}$ for any real s_0 .

Then we have

Theorem 1.6. Let $P \in S_{\rho,\delta}^m$ for m > 0. Assume that there exists a one parameter family $\{P_z\}_{z \in C}$ of complex powers for P. Then we have, for any $z_0 \in C$, $\tilde{P}_{z_0}^* = P_{z_0}^*$ as the map of L^2 into itself.

Proof. By Proposition 1.2 we have only to prove (1.12) $(P_{z_0}u, v) = (u, \tilde{P}_{z_0}^*v)$ for $u \in \mathcal{D}(P_{z_0})$, $v \in \mathcal{D}(\tilde{P}_{z_0}^*)$. By i) we have $P_z u \in H_{-m(\mathfrak{Re}^{z_1})}$ for $u \in \mathcal{D}(P_{z_0})$, so we have for a large N $(P_z u, \tilde{P}_{z_0}^*v) = (P_{z_0}P_z u, v) = (P_z P_{z_0}u, v)$

(1.13)
$$+((P_{z_0}P_z - P_zP_{z_0})u, v), \quad u \in \mathcal{D}(P_{z_0}), \quad v \in \mathcal{D}(\tilde{P}_{z_0}^*)$$
(Re $z < -N$)

From Lemmas 1.3–1.4 and iii)-iv) we have $(P_z u, \tilde{P}_{z_0}^* v)$ is analytic in zwhen $\Re e \ z < 0$ and $\lim_{s \to -0} (P_s u, \tilde{P}_{z_0}^* v) = (u, \tilde{P}_{z_0}^* v)$. Since $P_{z_0} u \in L^2$, we also have that $(P_z P_{z_0} u, v)$ is analytic in z when $\Re e \ z < 0$ and $\lim_{s \to -0} (P_s P_{z_0} u, v)$ $= (P_{z_0} u, v)$. Setting $s_0 = 0$ in v) and writing

$$\begin{split} P_{z_0}P_z - P_z P_{z_0} = & (P_{z_0}P_z - P_{z_{0+z}}) + (P_{z_{0+z}} - P_{z_0}P_z),\\ \text{we can see that } & ((P_{z_0}P_z - P_z P_{z_0})u, v) \text{ is analytic in } z \text{ and} \\ & \lim ((P_{z_0}P_s - P_s P_{z_0})u, v) = 0. \end{split}$$

Then letting $z \rightarrow -0$ on the real line in (1.13), we get (1.12). This completes the proof. Q.E.D.

§2. Proof of main theorem. We exhibit a theorem given in [6].

Theorem 2.1. Let $P=p(X, D_x)$ be an $l \times l$ matrix of pseudodifferential operators whose symbols satisfy the condition of main theorem. Then we can construct a one parameter family $\{P_z\}_{z \in C}$ of complex powers for P such that $m(s) = \tau ms$ for s < 0, = ms for $s \ge 0$, $\sigma(P_z)(x, \xi)$ are slowly varying, and $P_{z_1}P_{z_2} - P_{z_1+z_2}$ are compact from H_{s_1} into H_{s_2} for any real s_1, s_2 .

Sketch of the proof. We first construct a parametrix $r(\zeta; X, D_x) = \sum_{j=0}^{\infty} q_j(\zeta; X, D_x) \in S_{\rho,\delta}^{-rm}$ of $(P-\zeta I)$ in $\mathcal{Z}_0 = \{\zeta \in C; \text{ dis } (\zeta, (-\infty, 0]) \leq c_0\}$ by the usual way. Then we note that $q_0(\zeta; x, \xi) = (P(x, \xi) - \zeta I)^{-1}$ and, for $q_j(\zeta; x, \xi) (\in S_{\rho,\delta}^{-rm-j(\rho-\delta)}), j=1, 2, \cdots$, we can take bounded functions $C_{\alpha,\beta}(x)$ as $C_{\alpha,\beta}$ of (0.1) such that $C_{\alpha,\beta}(x) \rightarrow 0(|x| \rightarrow \infty)$ for any α, β . This fact derives the last statement of Theorem 2.1. According to Hayakawa and Kumano-go [2] consider the Dunford integral

(2.1)
$$p_z(x,\xi) = (2\pi i)^{-1} \int_{\Gamma} \zeta^z r(\zeta; x,\xi) d\zeta$$
 (Re $z < 0$),

where Γ is an oriented curve defined by $\{\zeta \in C; \text{ dis } (\zeta, (-\infty, 0]) \leq c_0/2\}$. Then $p_z(x, \xi)$ has the analytic continuation to the whole z-plane. We can see also

No. 6]

H. KUMANO-GO

(2.2)
$$\int_{\Gamma} \zeta^{z} (p(x,\xi) - \zeta I)^{-1} d\zeta = p(x,\xi)^{z}, \quad \int_{\Gamma} \zeta^{z} q_{j}(\zeta;x,\xi) d\zeta = 0, \quad j = 1, 2, \cdots$$

$$(z = 0, 1),$$

so that we have $p_0(x, \xi) = 1$ and $p_1(x, \xi) = p(x, \xi)$. For the group property and the continuity in the $S^s_{\rho,\vartheta}$ -topology we have to do careful calculation which is omitted here. For the scalar case we can see the concrete form in Nagase and Shinkai [7].

We use Proposition 2.1 of Hörmander [4] in the following modified form:

Lemma 2.2. Let $\{P_t\}_{0 \le t \le 1}$ be the family of an $l \times l$ matrix of pseudo-differential operators of class $S_{\rho,\delta}^{s_0}$ for some s_0 such that $\tilde{P}_t^* = P_t^*$ as the operators of L^2 into itself. Suppose that $\sigma(P_t)(x,\xi)$ and $\sigma(\tilde{P}_t^*)(x,\xi)$ are continuous in the $S_{\rho,\delta}^{s_0}$ -topology, and that there exists a family $\{Q\}_{0 \le t \le 1}$ of parametrices $Q_t(\in S_{\rho,\delta}^0)$ for P_t such that Q_t is strongly continuous in the L^2 -topology, $\{\sigma(Q_t)(x,\xi)\}_{0 \le t \le 1}$ is bounded in $S_{\rho,\delta}^0$ and (2.3) $Q_t P_t \subset I + K_t$, $P_t Q_t \subset I + K_t'$, where K_t and K_t' are compact operators in L^2 and continuous in the uniform L^2 -topology. Then P_t is Fredholm type and

(2.4) index $P_t = \dim \ker P_t - \operatorname{codim} \mathcal{R}_e P_t = \operatorname{Const.}$ on [0, 1].

Proof is omitted, but we only note that the graphs:

 $G = \{(t, u, P_t u) ; u \in \mathcal{D}(P_t), t \in [0, 1]\}$

and

$$G^* = \{(t, v, \tilde{P}_t^* v) ; v \in \mathcal{D}(\tilde{P}_t^*), t \in [0, 1]\}$$

are closed in $[0, 1] \times L^2 \times L^2$.

Proof of main theorem. By means of Theorem 2.1 we have a one parameter family $\{P_z\}_{z \in C}$ of complex powers P_z for P. We consider $\{P_t\}_{0 \leq t \leq 1}$. Then we have P_{-t} as Q_t in Lemma 2.2. Then we have by (2.4) "index $P = \operatorname{index} P_1 = \operatorname{index} P_0 = \operatorname{index} I = 0$ ". Q.E.D.

Remark for main theorem. When $p(x,\xi)$ satisfies the condition (0.3) in $\{(x,\xi); |\xi| \ge \gamma(x)\}$ we take a C_0^{∞} -function $a(x)(\ge 0)$ which is equal to 1 on supp γ . Then $p_0(x,\xi) = p(x,\xi) + \lambda_0 a(x)I$ satisfies (0.3) in $R_x^n \times R_{\varepsilon}^n$ for a fixed $\lambda_0 > 0$. Hence we have index $p_0(X, D_x) = 0$. Set $P_t = p_0(X, D_x) - t\lambda_0 a(x)I$, $0 \le t \le 1$, and $Q_t = Q$ where $Q(\in S_{\rho,\delta}^{-\tau m})$ is the parametrix for $p_0(X, D_x)$. Then $P_0 = p_0(X, D_x)$, $P_1 = p(X, D_x)$, and, noting that Qa(x) and a(x)Q are compact, we see that we can apply Lemma 2.2 to $\{P_t\}_{0\le t\le 1}$. Hence $p(X, D_x)$ is Fredholm type and "index $p(X, D_x) = index p_0(X, D_x) = 0$ ".

406

References

- [1] V. V. Grushin: Pseudo-differential operators on \mathbb{R}^n with bounded symbols. Functional Anal. Appl., 4, 202-212 (1970).
- [2] K. Hayakawa and H. Kumano-go: Complex powers of a system of pseudodifferential operators. Proc. Japan Acad., 47, 359-364 (1971).
- [3] L. Hörmander: Pseudo-differential operators and hypoelliptic equations. Proc. Symposium on Singular Integrals. Amer. Math. Soc., 10, 138-183 (1967).
- [4] ——: On the index of pseudo-differential operators (to appear).
- [5] H. Kumano-go: Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo, 17, 31-50 (1970).
- [6] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudodifferential operators with applications (to appear in Osaka Math. J.).
- [7] M. Nagase and K. Shinkai: Complex powers of non-elliptic operators. Proc. Japan Acad., 46, 779-783 (1970).
- [8] M. A. Šubin: Pseudo-differential operators in Rⁿ. Soviet Math. Dokl., 12, 147-151 (1971).