91. On Hypersurfaces which are Close to Spheres By Kanji Motomiya Nagoya Institute of Technology (Comm. by Kinjirô Kunugi, M. J. A., June 2, 1972) **o.** Some characterizations of the sphere among the closed strictly convex hypersurfaces in \mathbb{R}^{n+1} were given in [1]. In particular, the following theorem holds: A closed strictly convex hypersurface with $K_{n-1}/K_n = r$ is a hypersphere of radius r, where K_{n-1} is the (n-1)-th mean curvature and K_n is the Gaussian curvature. Then, we prove Theorem. Let M be a closed strictly convex hypersurface in $R^{n+1}(n \ge 2)$. If the function K_{n-1}/K_n on M is sufficiently close to r, then M is arbitrary close to a hypersphere of radius r in the sense that it can be enclosed between two concentric hyperspheres whose radius is arbitrarily close to r. For the case where n=2, D. Koutroufiotis proved in [3]. Our proof of theorem is the same method of his proof in [3]. 1. For the sake of simplicity, we shall assume our manifolds and mappings to be of class C^{∞} . Let R^{n+1} be the (n+1)-dimensional euclidean space. By a hypersurface in \mathbb{R}^{n+1} we mean a n-dimensional connected manifold M with an immersion x. Suppose M to be oriented. Then to $p \in M$, there is a uniquely determined unit normal vector $\xi(p)$ at x(p). We put $$I = dx \cdot dx$$, $II = -d\xi \cdot dx$. Let k_1, \dots, k_n , are called the principal curvatures, be the eigenvalues of II relative to I. The *i*-th mean curvature K_i $(1 \le i \le n)$ is given by the *i*-th elementary symmetric function divided by $\binom{n}{i} = n!/i!(n-i)!$ i.e., $$\binom{n}{i}K_i = \sum k_1 \cdots k_i$$. In particular, $K_n = k_1 \cdots k_n$ is called the Gaussian curvature. We shall consider closed strictly convex hypersurfaces i.e., compact hypersurfaces for which the Gaussian curvature K_n never vanishes on M. We shall assume that the normal vector ξ is interior. Let S^n be the unit sphere in R^{n+1} . We denote by g the induced Riemannian metric on S^n . Since the Gaussian curvature K_n never vanishes on M, the spherical mapping ξ of M onto S^n is a diffeomorphism. $$S^n \xrightarrow{\xi^{-1}} M \xrightarrow{x} R^{n+1}$$. We put $$X = x \circ \xi^{-1}$$. We now remark that the *i*-th mean curvature \tilde{K}_i of the hypersurface (S^n, X) is given by $$\tilde{K}_i(\nu) = K_i(\xi^{-1}(\nu))$$ at each point $\nu \in S^n$. We shall denote $\tilde{K}_i(\nu)$ by the same letter $K_i(\nu)$. The support function φ of the hypersurface (S^n, X) is defined by $$\varphi(\nu) = -X(\nu) \cdot \nu$$ where \cdot is the inner product in \mathbb{R}^{n+1} . Then the support function φ satisfies the following differential equation: where Δ is the Laplace-Beltrami operator with respect to the natural Riemannian metric g on S. In fact, let $\{X_1, \dots, X_n\}$ be an orthonormal basis in $T_{\nu}(S^n)$ and H be the symmetric tensor field of type (1,1) corresponding to the second fundamental form II. We have $$\begin{split} \varDelta\varphi &= \sum_{i=1}^n \mathbb{V}_{X_i} \mathbb{V}_{X_i} \varphi = - \sum \mathbb{V}_{X_i} X \cdot \mathbb{V}_{X_i} \nu - X \cdot \sum \mathbb{V}_{X_i} \mathbb{V}_{X_i} \nu \\ &= \sum \mathbb{V}_{H^{-1}X_i} \nu \cdot \mathbb{V}_{X_i} \nu - X \cdot \varDelta \nu = \sum g(H^{-1}X_i, X_i) + nX \cdot \nu \\ &= \operatorname{Trace} H^{-1} - n\varphi = nK_{n-1} / K_n - n\varphi. \end{split}$$ Let U_1 and U_2 be open subsets of S^n defined by $$U_1 = \left\{ (x_1, \dots, x_{n+1}) \in S^n \, | \, x_{n+1} > -\frac{1}{2} \right\},$$ $$U_2 = \left\{ (x_1, \dots, x_{n+1}) \in S^n \, | \, x_{n+1} < \frac{1}{2} \right\}.$$ Those open sets define an open covering of S^n and are coordinate neibourhoods with local coordinates (y_1, \dots, y_n) . Next, we shall define the some norms of functions on S^n . The norm of a continuous function f on S is defined by $$||f|| = \sup_{\nu \in S^n} |f(\nu)|.$$ For some p, 1 , and some integer <math>k, the norm of a C^k -function f on S^n is defined by $$\|f\|_{k,p} = \left\{ \int_{U_1} \sum_{|lpha| \leqslant k} |D^lpha f|^p \ dU_1 ight\}^{1/p} + \left\{ \int_{U_2} \sum_{|lpha| \leqslant k} |D^lpha f|^p \ dU_2 ight\}^{1/p},$$ where $\alpha = (\alpha_1, \dots, \alpha_n)$, $|\alpha| = \alpha_1 + \dots + \alpha_n$ and $D^{\alpha} f = \partial^{|\alpha|} f / \partial y_1^{\alpha_1} \dots \partial y_n^{\alpha_n}$. 2. Proof of Theorem. Let (S^n, X_0) be the hypersurface. The corresponding support function φ_0 satisfies the linear elliptic partial differential equation (1.1) $$\Delta \varphi + n\varphi = nK_{n-1}/K_n$$. We put $\varphi_0 = r + \psi_0$. Then ψ_0 satisfies the following equation: (2.1) $$\Delta \psi + n \psi = n(K_{n-1}/K_n - r).$$ From the theory of spherical harmonics [4], the linear functions $\psi = a_1x_1 + \cdots + a_{n+1}x_{n+1}$, restricted to the unit sphere, are the only solutions of the corresponding homogeneous equation $\Delta \psi + n\psi = 0$. Therefore, the inhomogeneous differential equation (2.1) has solutions $$\psi = \psi_0 + a_1 x_1 + \cdots + a_{n+1} x_{n+1}.$$ Among those solutions there is a unique one ψ which is orthogonal to all the solutions of the homogeneous equation, namely the one with (2.2) $$a_1 = \frac{-\int_{S^n} \psi_0 x_1 d\omega}{\int_{S^n} x_1^2 d\omega}, \dots, a_{n+1} = \frac{-\int_{S^n} \psi_0 x_{n+1} d\omega}{\int_{S^n} x_{n+1}^2 d\omega}.$$ From the Banach's theorem and the Fredholm theory on Banach spaces [5], such unique solution ψ , by virtue of its choice, satisfies the inequality (2.3) $\|\psi\|_{2,p} \leqslant c_1 \|K_{n-1}/K_n - r\|_{0,p}$ where c_1 is some constant depending only on p. From Sobolev's inequalities, we have, if p > n/2, where c_2 is a constant independent of the choice of the function ψ . Therefore, we have $$\|\psi\| \leqslant c_1 c_2 \|K_{n-1}/K_n - r\|_{0, p}.$$ We consider now the hypersurface (S^n, X) obtained by a translation $$X=X_0-a$$, where $a = (a_1, \dots, a_{n+1})$ is the constant vector given by (2.2). Then, the corresponding support function φ is given by $$\varphi = r + \psi$$ From inequality (2.5), it follows that, given an $\varepsilon > 0$, if $||K_{n-1}/K_n - r||_{0,p}$ is sufficiently small, $||\psi|| < \varepsilon$. Therefore, we have $$(2.6) r - \varepsilon < \varphi < r + \varepsilon.$$ Let P_1 be the point on the hypersurface (S^n, X) at maximal distance from the origin 0 and P_2 be the point on it at minimal distance from 0. The segments $0P_1$ and $0P_2$ are perpendicular to the hypersurface at P_1 , respectively P_2 . Therefore, we have $$|OP_1| = \varphi(\nu_1)$$ and $|OP_2| = \varphi(\nu_2)$. From inequality (2.6), it follows that for an arbitrary point P on the hypersurface $$r-\varepsilon < \varphi(\nu_2) = |OP_2| \le |OP| \le |OP_1| = \varphi(\nu_1) < r+\varepsilon.$$ Therefore, the hypersurface lies entirely within the shell between the hyperspheres of radius $r-\varepsilon$ and $r+\varepsilon$. Q.E.D. ## References - S S. Chern: Integral formulas for hypersurfaces in euclidean space and their applications to uniqueness theorems. J. Math. Mech., 8, 947-955 (1959). - [2] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. Interscience, New York (1963). - [3] D. Koutroufiotis: Ovaloids which are almost spheres. Comm. Pure Appl. Math., 24, 289-300 (1971). - [4] S. Mizohata: Introduction to Integral Equation (in Japanese). Asakura (1968). - [5] K. Yosida: Functional Analysis. I (in Japanese). Iwanami (1960).