91. On Hypersurfaces which are Close to Spheres

By Kanji Motomiya

Nagoya Institute of Technology

(Comm. by Kinjirô Kunugi, M. J. A., June 2, 1972)

o. Some characterizations of the sphere among the closed strictly convex hypersurfaces in \mathbb{R}^{n+1} were given in [1].

In particular, the following theorem holds:

A closed strictly convex hypersurface with $K_{n-1}/K_n = r$ is a hypersphere of radius r, where K_{n-1} is the (n-1)-th mean curvature and K_n is the Gaussian curvature.

Then, we prove

Theorem. Let M be a closed strictly convex hypersurface in $R^{n+1}(n \ge 2)$. If the function K_{n-1}/K_n on M is sufficiently close to r, then M is arbitrary close to a hypersphere of radius r in the sense that it can be enclosed between two concentric hyperspheres whose radius is arbitrarily close to r.

For the case where n=2, D. Koutroufiotis proved in [3]. Our proof of theorem is the same method of his proof in [3].

1. For the sake of simplicity, we shall assume our manifolds and mappings to be of class C^{∞} .

Let R^{n+1} be the (n+1)-dimensional euclidean space.

By a hypersurface in \mathbb{R}^{n+1} we mean a n-dimensional connected manifold M with an immersion x.

Suppose M to be oriented. Then to $p \in M$, there is a uniquely determined unit normal vector $\xi(p)$ at x(p).

We put

$$I = dx \cdot dx$$
, $II = -d\xi \cdot dx$.

Let k_1, \dots, k_n , are called the principal curvatures, be the eigenvalues of II relative to I. The *i*-th mean curvature K_i $(1 \le i \le n)$ is given by the *i*-th elementary symmetric function divided by $\binom{n}{i} = n!/i!(n-i)!$ i.e.,

$$\binom{n}{i}K_i = \sum k_1 \cdots k_i$$
.

In particular, $K_n = k_1 \cdots k_n$ is called the Gaussian curvature. We shall consider closed strictly convex hypersurfaces i.e., compact hypersurfaces for which the Gaussian curvature K_n never vanishes on M.

We shall assume that the normal vector ξ is interior. Let S^n be the unit sphere in R^{n+1} . We denote by g the induced Riemannian metric on S^n .

Since the Gaussian curvature K_n never vanishes on M, the spherical mapping ξ of M onto S^n is a diffeomorphism.

$$S^n \xrightarrow{\xi^{-1}} M \xrightarrow{x} R^{n+1}$$
.

We put

$$X = x \circ \xi^{-1}$$
.

We now remark that the *i*-th mean curvature \tilde{K}_i of the hypersurface (S^n, X) is given by

$$\tilde{K}_i(\nu) = K_i(\xi^{-1}(\nu))$$
 at each point $\nu \in S^n$.

We shall denote $\tilde{K}_i(\nu)$ by the same letter $K_i(\nu)$.

The support function φ of the hypersurface (S^n, X) is defined by

$$\varphi(\nu) = -X(\nu) \cdot \nu$$

where \cdot is the inner product in \mathbb{R}^{n+1} .

Then the support function φ satisfies the following differential equation:

where Δ is the Laplace-Beltrami operator with respect to the natural Riemannian metric g on S.

In fact, let $\{X_1, \dots, X_n\}$ be an orthonormal basis in $T_{\nu}(S^n)$ and H be the symmetric tensor field of type (1,1) corresponding to the second fundamental form II.

We have

$$\begin{split} \varDelta\varphi &= \sum_{i=1}^n \mathbb{V}_{X_i} \mathbb{V}_{X_i} \varphi = - \sum \mathbb{V}_{X_i} X \cdot \mathbb{V}_{X_i} \nu - X \cdot \sum \mathbb{V}_{X_i} \mathbb{V}_{X_i} \nu \\ &= \sum \mathbb{V}_{H^{-1}X_i} \nu \cdot \mathbb{V}_{X_i} \nu - X \cdot \varDelta \nu = \sum g(H^{-1}X_i, X_i) + nX \cdot \nu \\ &= \operatorname{Trace} H^{-1} - n\varphi = nK_{n-1} / K_n - n\varphi. \end{split}$$

Let U_1 and U_2 be open subsets of S^n defined by

$$U_1 = \left\{ (x_1, \dots, x_{n+1}) \in S^n \, | \, x_{n+1} > -\frac{1}{2} \right\},$$

$$U_2 = \left\{ (x_1, \dots, x_{n+1}) \in S^n \, | \, x_{n+1} < \frac{1}{2} \right\}.$$

Those open sets define an open covering of S^n and are coordinate neibourhoods with local coordinates (y_1, \dots, y_n) .

Next, we shall define the some norms of functions on S^n .

The norm of a continuous function f on S is defined by

$$||f|| = \sup_{\nu \in S^n} |f(\nu)|.$$

For some p, 1 , and some integer <math>k, the norm of a C^k -function f on S^n is defined by

$$\|f\|_{k,p} = \left\{ \int_{U_1} \sum_{|lpha| \leqslant k} |D^lpha f|^p \ dU_1
ight\}^{1/p} + \left\{ \int_{U_2} \sum_{|lpha| \leqslant k} |D^lpha f|^p \ dU_2
ight\}^{1/p},$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$, $|\alpha| = \alpha_1 + \dots + \alpha_n$ and $D^{\alpha} f = \partial^{|\alpha|} f / \partial y_1^{\alpha_1} \dots \partial y_n^{\alpha_n}$.

2. Proof of Theorem. Let (S^n, X_0) be the hypersurface. The corresponding support function φ_0 satisfies the linear elliptic partial differential equation (1.1)

$$\Delta \varphi + n\varphi = nK_{n-1}/K_n$$
.

We put $\varphi_0 = r + \psi_0$.

Then ψ_0 satisfies the following equation:

(2.1)
$$\Delta \psi + n \psi = n(K_{n-1}/K_n - r).$$

From the theory of spherical harmonics [4], the linear functions $\psi = a_1x_1 + \cdots + a_{n+1}x_{n+1}$, restricted to the unit sphere, are the only solutions of the corresponding homogeneous equation $\Delta \psi + n\psi = 0$. Therefore, the inhomogeneous differential equation (2.1) has solutions

$$\psi = \psi_0 + a_1 x_1 + \cdots + a_{n+1} x_{n+1}.$$

Among those solutions there is a unique one ψ which is orthogonal to all the solutions of the homogeneous equation, namely the one with

(2.2)
$$a_1 = \frac{-\int_{S^n} \psi_0 x_1 d\omega}{\int_{S^n} x_1^2 d\omega}, \dots, a_{n+1} = \frac{-\int_{S^n} \psi_0 x_{n+1} d\omega}{\int_{S^n} x_{n+1}^2 d\omega}.$$

From the Banach's theorem and the Fredholm theory on Banach spaces [5], such unique solution ψ , by virtue of its choice, satisfies the inequality (2.3) $\|\psi\|_{2,p} \leqslant c_1 \|K_{n-1}/K_n - r\|_{0,p}$

where c_1 is some constant depending only on p.

From Sobolev's inequalities, we have, if p > n/2,

where c_2 is a constant independent of the choice of the function ψ . Therefore, we have

$$\|\psi\| \leqslant c_1 c_2 \|K_{n-1}/K_n - r\|_{0, p}.$$

We consider now the hypersurface (S^n, X) obtained by a translation

$$X=X_0-a$$
,

where $a = (a_1, \dots, a_{n+1})$ is the constant vector given by (2.2).

Then, the corresponding support function φ is given by

$$\varphi = r + \psi$$

From inequality (2.5), it follows that, given an $\varepsilon > 0$, if $||K_{n-1}/K_n - r||_{0,p}$ is sufficiently small, $||\psi|| < \varepsilon$.

Therefore, we have

$$(2.6) r - \varepsilon < \varphi < r + \varepsilon.$$

Let P_1 be the point on the hypersurface (S^n, X) at maximal distance from the origin 0 and P_2 be the point on it at minimal distance from 0. The segments $0P_1$ and $0P_2$ are perpendicular to the hypersurface at P_1 , respectively P_2 . Therefore, we have

$$|OP_1| = \varphi(\nu_1)$$
 and $|OP_2| = \varphi(\nu_2)$.

From inequality (2.6), it follows that for an arbitrary point P on the hypersurface

$$r-\varepsilon < \varphi(\nu_2) = |OP_2| \le |OP| \le |OP_1| = \varphi(\nu_1) < r+\varepsilon.$$

Therefore, the hypersurface lies entirely within the shell between the hyperspheres of radius $r-\varepsilon$ and $r+\varepsilon$. Q.E.D.

References

- S S. Chern: Integral formulas for hypersurfaces in euclidean space and their applications to uniqueness theorems. J. Math. Mech., 8, 947-955 (1959).
- [2] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. Interscience, New York (1963).
- [3] D. Koutroufiotis: Ovaloids which are almost spheres. Comm. Pure Appl. Math., 24, 289-300 (1971).
- [4] S. Mizohata: Introduction to Integral Equation (in Japanese). Asakura (1968).
- [5] K. Yosida: Functional Analysis. I (in Japanese). Iwanami (1960).