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91. On Hypersurfaces which are Close to Spheres
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Nagoya Institute of Technology

(Comm. by Kinjir.5 KUNU(I, M. J. A., June 2, 1972)

0o Some characterizations of the sphere among the closed strictly
convex hypersurfaces in Rn/l were given in [1].
In particular, the following theorem holds"
A closed strictly convex hypersurface with K_/K.-r is a hypersphere
of radius r, where Kn_l is the (n--1)-th mean curvature and Kn is the
Gaussian curvature.
Then, we prove

Theorem. Let M be a closed strictly convex hypersurface in
R+(n/>2). If the function Kn_/K on M is sufficiently close to r,
then M is arbitrary close to a hypersphere of radius r in the sense that
it can be enclosed between two concentric hyperspheres whose radius

is arbitrarily close to r.
For the case where n=2, D. Koutroufiotis proved in [3]. Our proof of
theorem is the same method of his proo in [3].

1. For the sake of simplicity, we shall assume our manifolds and
mappings to be of class C.
Let R+ be the (n+ 1)-dimensional euclidean space.
By a hypersurace in R+x we mean a n-dimensional connected manifold

M with an immersion x.
Suppose M to be oriented. Then to p e M, there is a uniquely deter-
mined unit normal vector (p) at x(p).
We put

I dx. dx, II d. dx.
Let k, ..., k, re called the principal curvatures, be the eigenvalues o
II relative to I. The i-th mean curvature K (1<i< n) is given by the

i-th elementary symmetric unction divided by () =n !/i !(n-i) i.e.,

n

In particular, K=/...k is called the Gaussian curvature. We shall
consider closed strictly convex hypersurtaees i.e., compact hypersur-
aces for which the Gaussian curvature K never vanishes on M.

We shall assume that the normal vector is interior. Let S be
the unit sphere in R+. We denote by g the induced Riemannian
metric on S.
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Since the Gaussian curvature Kn never vanishes on M, the spherical
mapping o M onto S is a diffeomorphism.

Sn__.._>M Rn + .
We put

X--xo-.
We now remark that the i-th mean curvature K of the hypersurface
(Sn, X) is given by

/(,)-K(-(,)) at each point , e S.
We shall denote K(,) by the same letter K(,).
The support function 9 of the hypersurface (Sn, X) is defined by

() X().,
where is the inner product in R+.
Then the support function satisfies the following differential equation"
(1.1) /1+ ng--nKn_x/Kn,
where//is the Laplace-Beltrami operator with respect to the natural
Riemannian metric g on S.

In fact, let {X, ., X} be an orthonormal basis in T(Sn) and H be
the symmetric tensor field o type (1,1) corresponding to the second
undamental orm II.
We have

f’n-,x,.f’x,--X. /l,- g(H-X, X) + nX. ,
Trace H- n-nKn_/Kn n.

Let U and U be open subsets of S defined by

g1- (Xl, ..., Xn+l) Snlxn+l>-
U2- (Xl, ., xn+l) e Snlxn+l<

Those open sets define an open covering o S and are coordinate nei-
bourhoods with local coordinates (y,..., y).
Next, we shall define the some norms of functions on Sn.
The norm o a continuous function f on S is defined by

f -- sup f(v)].
sn

For some p, 1 (p(, and some integer k, the norm of a C-function

f on S is defined by

f ,- If ul + IDJI u
where a--(a, ..., a), ]a]--a+ +a and Df--3f/3y;...3y,.

2. Proof of Theorem. Let (Sn, Xo) be the hypersurface. The
corresponding support function % satisfies the linear elliptic partial
differentiM equation (1.1)
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,+n nK_ /K.
We put 0-r+ 0.
Then 0 satisfies the following equation"
(2.1) +n=n(Kn_ /Kn r).
From the theory of spherical harmonics [4], the linear functions

--aX+ +gn+Xn+, restricted to the unit sphere, are the only solu-
tions of the corresponding homogeneous equation A+n--0. There-
ore, the inhomogeneous differential equation (2.1) has solutions

Among those solutions there is a unique one which is orthogonal to
all the solutions of the homogeneous equation, namely the one with

(2.2) a
Ixd Ix+d

From the Banach’s theorem and the Fredholm theory on Banach spaces
[5], such unique solution , by virtue o its choice, satisfies the inequality
(2.3)
where c is some constant depending only on p.
From Sobolev’s inequalities, we have, if p>n/2,
(2.4) l < c ,
where c is a constant independent of the choice of the function
Therefore, we have
(2.5) + cc K_/Kn--rl]o,.
We consider now the hypersurface (S, X) obtained by a translation

X=Xo-a,
where a-(a,..., an+x) is the constant vector given by (2.2).
Then, the corresponding support unction 9 is given by

--r++.
From inequality (2.5), it follows that, given an 0, if K_/K--r[[o,,
is sufficiently small,
Therefore, we have
(2.6)
Let P be the point on the hypersurface (S, X) at maximal distance
rom the origin 0 and P be the point on it at minimal distance from 0.
The segments 0P and 0P are perpendicular to the hypersurface at P,
respectively P. Therefore, we have

OP[--(,) and OP.]--(,).
From inequality (2.6), it follows that for an arbitrary point P on the
hypersurface

Therefore, the hypersurface lies entirely within the shell between the
hyperspheres of radius r-e and r+e. Q.E.D.
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