89. On Normal Approximate Spectrum. III

By Masatoshi FUJII^{*)} and Kazuhiro TAMAKI^{**)} (Comm. by Kinjirô KUNUGI, M. J. A., June 2, 1972)

1. Introduction. In the previous notes [3] and [5], we have discussed certain properties of the normal approximate spectra of operators on a Hilbert space \mathfrak{H} . A complex number λ is an *approxi*mate propervalue of T acting on \mathfrak{H} if there is a sequence $\{x_n\}$ of unit vectors such that

 $(*) \qquad \qquad \|(T-\lambda)x_n\| \to 0 \qquad (n\to\infty).$

The set $\pi(T)$ of all approximate propervalues is called the *approximate spectrum* of T. If there exists a sequence $\{x_n\}$ of unit vectors satisfying (*) and

 $(**) \qquad \qquad \|(T-\lambda)^*x_n\| \to 0 \qquad (n \to \infty),$

then λ is called a normal approximate propervalue of T, which is occasionally discussed by Hildebrandt [7], Stampfli [11] and Yoshino [12]. The set $\pi_n(T)$ of all normal approximate propervalues of T is called the normal approximate spectrum of T. In general, $\pi_n(T)$ is a compact set in the plane and possibly void. Several equivalent conditions are discussed in [3], [5] and [9].

In the present note, we shall discuss some additional properties of the normal approximate spectra of operators. In § 2, we shall give a characterization of convexoids in terms of the normal approximate spectra. In a certain sense, a convexoid has sufficiently many normal approximate propervalues (Theorem 1), which is suggested by Prof. Z. Takeda, to whom the authors express their heaty thanks. In § 3, the normal approximate spectrum of the tensor product of operators is observed.

2. A characterization of convexoids. An operator T acting on a Hilbert space \mathfrak{F} is called a *convexoid* if

(1) $\overline{W}(T) = \operatorname{co} \sigma(T),$

where $\overline{W}(T)$ is the closure of the numerical range W(T) given by

(2) $W(T) = \{(Tx | x); ||x|| = 1\},\$

co S is the convex hull of S, and $\sigma(T)$ is the spectrum of T. The following theorem is suggested by Prof. Z. Takeda:

Theorem 1. An operator T is a convexoid if and only if the closed numerical range $\overline{W}(T)$ is spanned by the normal approximate

^{*)} Fuse Senior Highschool, Osaka.

^{**&#}x27; Department of Mathematics, Osaka Kyoiku University.

 $\bar{W}(T) = \operatorname{co} \pi_n(T).$

Proof. Suppose that T is a convexoid. Then an extreme point of $\overline{W}(T)$ belongs to $\sigma(T)$ and so $\pi(T)$, so that

 $\overline{W}(T) = \operatorname{co} \operatorname{ext} \overline{W}(T) = \operatorname{co} (\sigma(T) \cap \partial \overline{W}(T)),$

where ext S is the set of all extreme points of S and ∂S is the boundary of S. On the other hand, Hildebrandt's theorem [7; Satz 2] (a proof is contained in [5; Theorem 1]) implies that

$$\sigma(T) \cap \partial \bar{W}(T) \subset \pi_n(T).$$

Hence we have

$$\overline{W}(T) \subset \operatorname{co} (\sigma(T) \cap \partial \overline{W}(T)) \subset \operatorname{co} \pi_n(T) \subset \overline{W}(T),$$

so that T satisfies (3).

Conversely, if T satisfies (3), then we have

 $\bar{W}(T) = \operatorname{co} \pi_n(T) \subset \operatorname{co} \sigma(T) \subset \bar{W}(T),$

so that T satisfies (1).

In our previous note [3; Theorem 1], we have shown that $\lambda \in \pi_n(T)$ if and only if there is a character ϕ on the unital C^* -algebra \mathfrak{A} generated by T satisfying

(4) $\phi(T) = \lambda$. Hence Theorem 1 implies the following theorem which is originally suggested by Prof. Z. Takeda:

Theorem 2. Let X be the character space of all characters of the unital C*-algebra \mathfrak{A} generated by T. Then T is a convexoid if and only if there exist "sufficiently many" characters of \mathfrak{A} in the sense that (5) $\overline{W}(T) = \operatorname{co} X(T)$,

where

(6) $X(T) = \{\phi(T); \phi \in X\}.$

However, Theorem 2 does not mean that the state space \sum of all states of \mathfrak{A} is the convex closure (in the weak* topology) of X:

(7)
$$\sum = \overline{\operatorname{co}} X.$$

More precisely, we can show

Theorem 3. An operator T has "sufficiently many" characters in the sense that the unital C*-algebra \mathfrak{A} generated by T satisfies (7) if and only if T is normal.

Proof. If T is normal, then (7) is clearly satisfied which is implied by the well-known fact that the extreme points of the state space of an abelian C^* -algebra are multiplicative.

Suppose now that T is non-normal. Then $A = T^*T - TT^* \neq 0$ generates a non-trivial two-sided ideal \Re which is called in [5; §5] the *pseudoradical* of \Re . By [5; Theorem 7], \Re is the intersection of the kernels of all characters of \Re , so that $X(A) = \{0\}$. On the other hand, by a theorem of Berberian and Orland [1],

(3)

(8) $\overline{W}(A) = \sum (A),$

so that $\sum (A) \neq \{0\}$; hence \mathfrak{A} does not satisfy (7). This proves the theorem.

Remark. Mr. H. Takai presents an another proof of the necessity part of Theorem 3 without using Berberian-Orland's theorem. If (7) is satisfied, and if ϕ is a convex combination of characters, then we have

(9) $\phi(T^*T) = \phi(TT^*),$

so that (9) is satisfied by any state ϕ by (7). By the completeness of the state space, we have $T^*T = TT^*$ from (9), that is, T is normal.

3. Tensor product. The tensor product of operators is recently discussed by many authors. Brown and Pearcy [2] show that

(10) $\sigma(A)\sigma(B) = \sigma(A \otimes B)$

for any A and B. However, the equality (10) does not hold for other spectra. We shall show here

Theorem 4. We have

(11)
$$\pi_n(A)\pi_n(B) \subset \pi_n(A \otimes B).$$

Proof. Our proof is essentially same with the proof of Berberian in [8] for the approximate spectrum. Since

(12)
$$A \otimes B - \alpha \beta = (A - \alpha) \otimes \beta + A \otimes (B - \beta),$$

we have

$$\begin{aligned} \| (A \otimes B - \alpha \beta) x_n \otimes y_n \| &\leq \| (A - \alpha) x_n \otimes y_n \| + \| A x_n \otimes (B - \beta) y_n \| \\ &= \| (A - \alpha) x_n \| \| y_n \| + \| A x_n \| \| (B - \beta) y_n \| \\ &= \| (A - \alpha) x_n \| + \| A \| \| (B - \beta) y_n \| \to 0 \end{aligned}$$

and

 $\|(A \otimes B - \alpha\beta)^* x_n \otimes y_n\| \leq \|(A - \alpha)^* x_n\| + \|A^*\| \|(B - \beta)y_n\| \to 0$ as $n \to \infty$, if $\alpha \in \pi_n(A)(\beta \in \pi_n(B))$ and $\{x_n\}(\{y_n\})$ is a sequence of unit vectors satisfying (*) and (**) for A and α (B and β , respectively). Hence $\alpha\beta \in \pi_n(A \otimes B)$.

Remark. We can prove the theorem basing on the reciprocity of the characters of \mathfrak{A} and $\pi_n(T)$ proved in [3; Theorem 1]. Let $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} be the unital C^* -algebras generated by A, B and $A \otimes B$ respectively. If ϕ and φ are characters on \mathfrak{A} and \mathfrak{B} respectively such that $\phi(A) = \alpha$ and $\varphi(B) = \beta$. Then we can easily check that $\phi \otimes \varphi$ is a character on the tensor product $\mathfrak{A} \otimes \mathfrak{B}$ of \mathfrak{A} and \mathfrak{B} . Since $\mathfrak{A} \otimes \mathfrak{B}$ contains \mathfrak{C} , the restriction ψ of $\phi \otimes \varphi$ on \mathfrak{C} is a character of \mathfrak{C} satisfying $\psi(A \otimes B) = \alpha\beta$, so that $\alpha\beta \in \pi_n(A \otimes B)$ by [3; Theorem 1].

Theorem 5. There are operators A and B for which the equality in (11) does not hold.

Proof. Let A be a projection and B an operator whose normal approximate spectrum is empty. Then the left-hand side of (11) is empty. If $x \in \ker A$, then we have

and

$$(A \otimes B)x \otimes y = Ax \otimes By = 0 \otimes By = 0$$
$$(A \otimes B)^*x \otimes y = A^*x \otimes B^*y = 0 \otimes B^*y = 0,$$

so that the right-hand side of (11) contains 0 and is not empty. This proves the theorem.

In $[5; \S 3]$, we have observed that

$$T = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

has empty normal approximate spectrum. But,

has a normal approximate propervalue, that is, $0 \in x_n(T \otimes T)$. Therefore, we can use T and $T \otimes T$ as an example to prove Theorem 5.

In [5; Definition 1], we have introduced the class S of operators by $S = \{T \in \mathfrak{B}(\mathfrak{H}) ; \pi_n(T) = \emptyset\}.$

By the above T, we can conclude

Theorem 6. There is an operator T which is not in S but the tensor product $T \otimes T$ belongs to S.

In general, the determinations of the approximate spectrum or the numerical range of the tensor product of operators are not easy, cf. [10]. In the notation of the preceeding remark, if every character of \mathfrak{C} is extensible to a character of $\mathfrak{A}\otimes\mathfrak{B}$, especially if $A\otimes 1$ and $1\otimes B$ are contained in \mathfrak{C} , then $\pi_n(A)\pi_n(B) = \pi_n(A\otimes B)$, by the reciprocity of the characters and the normal approximate spectrum.

4. Applications. We shall give here two applications of Theorem 1. We shall begin with the following theorem [6; Theorem 3]:

Theorem 7 (Furuta-Nakamoto). Let T be an invertible convexoid with the polar decomposition T = UR and U be "cramped" in the sense that $\sigma(U)$ is contained in an open half-plane F with $0 \notin F$. Then $0 \notin \overline{W}(T)$.

Proof. As noted in [5; § 4 Remark], the hypothesis insures us that $U, R \in \mathfrak{A}$ where \mathfrak{A} is the unital C*-algebra generated by T, and $\phi(T) = \phi(UR) = \phi(U)\phi(R)$

for any character ϕ of \mathfrak{A} . Since $\phi(U) \in \sigma(U) \subset F$ by [3; Theorem 1] and $\phi(R) > 0$, we have $\phi(T) \in F$. Hence $\pi_n(T) \subset F$ by a theorem of Kasahara-Takai [9], so that $\overline{W}(T) \subset F$ by Theorem 1, or $0 \notin \overline{W}(T)$.

Remark. The converse of Theorem 7 is proved in [6; Theorem 6]. A sharpening of Theorem 7 is contained in [6*].

Mr. M. Enomoto kindly points out an alternative proof of Theorem 7: If $0 \in \overline{W}(T)$, then by Theorem 1 there are characters ϕ_1, \dots, ϕ_n of \mathfrak{A} and $\alpha_1, \dots, \alpha_n$ with $\alpha_i \geq 0$ and $\alpha_1 + \dots + \alpha_n = 1$, and

$$0 = \sum_{i=1}^n \alpha_i \phi_i(T) = \sum_{i=1}^n \alpha_i \phi_i(R) \phi_i(U) \in F,$$

so that we have a contradiction.

An alternative proof of [4; Theorem 2] is possible by Theorem 1:

Theorem 8. For any operator A, there is a convexoid B such that $A \oplus B$ is a convexoid.

Proof. Clearly, there is a convexoid B with $\overline{W}(A) \subset \overline{W}(B)$. By Theorem 1, we have

$$\bar{W}(A \oplus B) = \operatorname{co} \left(\bar{W}(A) \cup \bar{W}(B) \right) = \bar{W}(B) = \operatorname{co} \pi_n(B)$$
$$\subset \operatorname{co} \pi_n(A \oplus B) \subset \bar{W}(A \oplus B),$$

so that $A \oplus B$ is a convexoid by Theorem 1.

References

- S. K. Berberian and G. H. Orland: On the closure of the numerical range of an operator. Proc. Amer. Math. Soc., 18, 499-503 (1967).
- [2] A. Brouwn and C. Pearcy: Spectra of tensor products of operators. Proc. Amer. Math. Soc., 17, 162-166 (1966).
- [3] M. Enomoto, M. Fujii, and K. Tamaki: On normal approximate spectrum. Proc. Japan Acad., 48, 211–215 (1972).
- [4] M. Fujii: On some examples of non-normal operators. Proc. Japan Acad., 47, 458-463 (1971).
- [5] M. Fujii and R. Nakamoto: On normal approximate spectrum. II. Proc. Japan Acad., 48, 297-301 (1972).
- [6] T. Furuta and R. Nakamoto: On some theorems of Berberian and Sheth. Proc. Japan Acad., 46, 841-845 (1970).
- [6*] ——: On the numerical range of an operator. Proc. Japan Acad., 47, 279–284 (1971).
- [7] S. Hildebrandt: Über den numerische Wertebereich eines Operators. Math. Ann., 163, 230-247 (1966).
- [8] V. Istrăţescu and I. Istrăţescu: On normaloid operators. Math. Zeits., 105, 153–156 (1968).
- [9] I. Kasahara and H. Takai: Approximate propervalues and characters of C*-algebras. Proc. Japan Acad., 48, 91-93 (1972).
- T. Saito: Numerical ranges of tensor products of operators. Tohoku Math. J., 19, 98-100 (1967).
- [11] J. G. Stampfii: On hyponormal and Toeplitz operators. Math. Ann., 183, 328-336 (1969).
- T. Yoshino: On the spectrum of a hyponormal operators. Tohoku Math. J., 17, 305-307 (1965).

No. 6]