107. A Note on Cogenerators in the Category of Modules

By Yutaka KAWADA

(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1972)

Let A be a ring with identity and $_{A}W$ a cogenerator in the category of unitary left A-modules, and denote by $B = \text{End}(_{A}W)$ the endomorphism ring of $_{A}W$. Then W is regarded as an A-B-bimodule. As for the structure of $_{A}W$ in general, there was a useful result of Osofsky [5, Lemma 1]. As for the structure of W_{B} , recently Onodera has obtained an interesting result [4, Theorem 1].

The purpose of this paper is to establish the following two theorems:

Theorem 1. Let $_{A}W$ be a cogenerator, and let $B = \text{End}(_{A}W)$ and $C = \text{End}(W_{B})$. Then W_{B} is absolutely pure and semi-injective. Furthermore A is dense in C relative to the finite topology. In particular, if $_{A}W$ is finitely cogenerating in the sense of Morita [3], then $_{A}W$ possesses the double centralizer property, i.e. C = A.

Theorem 2. Let $_{A}W$ be a cogenerator and $B = \text{End}(_{A}W)$, and denote by $S(W_{B})$ the socle of W_{B} . Let further $\{V_{\lambda} | \lambda \in A\}$ be a complete representative system of isomorphism classes of simple left A-modules such that $E(V_{\lambda}) \subset W$ for each $\lambda \in \Lambda$ (Cf. [5, Lemma 1]), where $E(V_{\lambda})$ denotes an injective hull of V_{λ} . Then $S(W_{B}) \subset W_{B}$, and $S(W_{B}) = \Sigma \oplus V_{\lambda}B$

$$(W_B) = \sum_{\lambda \in A} \oplus V_{\lambda}B$$

is the decomposition of $S(W_B)$ into homogeneous components.

Throughout this paper, all modules are assumed to be unitary, and we shall keep above notations and meanings. In particular, $_{A}W$ denotes always a cogenerator and B (resp. C) denotes the endomorphism ring of $_{A}W$ (resp. of W_{B}).

1. Proof of Theorem 1.

Previous to this, we need some lemmas.

Lemma 1 [4, Theorem 1]. Let M be a left A-module and set $M_B^* = \operatorname{Hom}_A(_AM, _AW_B)$. Then, for each finitely generated B-submodule U of M_B^* and for each B-homomorphism $f: U_B \to W_B$, there exists an element v in M such that $f = \rho(v) \cdot i$, where $i: U_B \to M_B^*$ implies the inclusion map and $\rho: M \to \operatorname{Hom}_B(M_B^*, W_B)$ is the canonical map defined by $\rho(x)(g) = g(x)$ for every $x \in M$ and $g \in M^*$.

Let us denote by W^n (resp. B^n) the direct sum of n copies of W (resp. of B). For a subset X of W^n , set

 $(0:X)_{B^n} = \{(b_1, \dots, b_n) \in B^n | \sum v_i b_i = 0$ for all $(v_1, \dots, v_n) \in X\}$. Similarly for a subset Y of B^n , set No. 7]

 $(0: Y)_{W^n} = \{(v_1, \dots, v_n) \in W^n | \sum v_i b_i = 0$ for all $(b_1, \dots, b_n) \in Y\}$. Then the following is a direct consequence of [4, Proposition 4].

Lemma 2. For any A-submodule U of $_AW^n$ the annihilator relation holds:

$$(0: (0: U)_{B^n})_{W^n} = U.$$

Lemma 3. Any A-submodule U of $_{A}W^{n}$ becomes a C-submodule, that is, $U=C \cdot U$.

Proof. Since $_{A}W$ is faithful we may regard as $A \subset C$. $C \cdot U$ is thereby an A-submodule of W^{n} and obviously $(0:U)_{B^{n}} = (0:C \cdot U)_{B^{n}}$. Hence we get $U = C \cdot U$ by Lemma 2.

Recall now that a right *B*-module *N* is said to be absolutely pure (resp. semi-injective), if for each finitely generated *B*-submodule *Y* of B_B^n , *n* arbitrary, (resp. of N_B) and for each *B*-homomorphism $f: Y \rightarrow N$ there exists a *B*-homomorphism $g: B^n \rightarrow N$ (resp. $g: N \rightarrow N$) such that g | Y = f. We are in a position to prove Theorem 1:

Proof of Theorem 1. At first set $M =_A W^n$ (resp. $M =_A A$) in Lemma 1. Then it is seen that W_B is absolutely pure (resp. semi-injective). Next we want to show that A is dense in C relative to the finite topology. Let v_1, \dots, v_n be given elements of W and let c_0 be an element of C. Since by Lemma 3 $C(v_1, \dots, v_n) = A(v_1, \dots, v_n)$ in W^n , there exists an element a_0 of A such that $c_0(v_1, \dots, v_n) = a_0(v_1, \dots, v_n)$, i.e. $c_0v_i = a_0v_i$ for $i = 1, \dots, n$. This implies that A is dense in C relative to the finite topology.

Finally assume that $_{A}W$ is finitely cogenerating. Since $_{A}W$ is faithful and finitely cogenerating, there are elements v_{1}, \dots, v_{n} in W such that $\cap (0: v_{i})_{A} = 0$. Let c_{0} be a given element of C and v_{0} an element of W. Then, since by Lemma 3 $C(v_{1}, \dots, v_{n}, v_{0}) = A(v_{1}, \dots, v_{n}, v_{0})$ in W^{n+1} , there is an element a_{0} of A such that

 $c_0(v_1, \dots, v_n, v_0) = a_0(v_1, \dots, v_n, v_0)$ and so $c_0v_0 = a_0v_0$. Similarly, for another element v of W we get an element a of A such that

 $c_0(v_1, \cdots, v_n, v) = a(v_1, \cdots v_n, v)$ and so $c_0v = av$.

But, since $a_0(v_1, \dots, v_n) = c_0(v_1, \dots, v_n) = a(v_1, \dots, v_n)$ in W^n we have $a_0v_i = av_i$ for $i=1, \dots, n$ and hence $a_0 - a \in \cap (0:v_i)_A = 0$. Thus it is shown that $c_0v = a_0v$ for every $v \in W$, that is, $C \subset A$ and consequently C = A. Hence the proof of Theorem 1 is completed.

2. Proof of Theorem 2.

Previous to this, we shall recall the following

Lemma 4 [5, Lemma 1]. $_{A}W$ is a cogenerator if and only if W contains a copy of the injective hull $E(_{A}V)$ of each simple left A-module V.

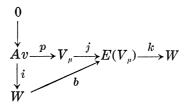
By Lemma 4 there exists a complete representative system

 $\{V_{\lambda} | \lambda \in \Lambda\}$ of isomorphism classes of simple left A-modules such that $E(V_{\lambda}) \subset W$ for each $\lambda \in \Lambda$.

Proof of Theorem 2. We shall proceed step by step. Step $1 = \sum W R = W$

Step 1. $\sum V_{\lambda}B \subset W_B$.

Let v be any non-zero element of W and let $V_{\mu}(\mu \in \Lambda)$ be a simple quotient of Av. Then, since $E(V_{\mu})$ is injective, there exists an element b of B such that the following diagram is commutative:



where *i*, *j* and *k* are inclusion maps and *p* is an epimorphism. Therefore p(v)=vb, i.e $V_{\mu}=Avb$ and hence $vB \cap \sum V_{\lambda}B \neq 0$. This shows that $\sum V_{\lambda}B \subset W_{B}$.

Step 2. $S(W_B) = \sum V_{\lambda}B$.

Let vB be any simple *B*-submodule of *W* and let $V_{\mu}(\mu \in A)$ be a simple quotient of Av. Then, in the same way as in Step 1, there is an element *b* of *B* such that $V_{\mu} = Avb$ and so $vB = vbB \subset V_{\mu}B$. This implies that $S(W_B) \subset \sum V_{\lambda}B$.

Conversely, assume that $vb_0 \neq 0$ ($v \in V_\lambda$, $b_0 \in B$). Since $Avb_0 \cong Av = V_\lambda$ by the map $q: xvb_0 \rightarrow xv$ ($x \in A$), in a similar way as in Step 1, we get an element b of B such that $v=q(vb_0)=vb_0b$ and hence $vB=vb_0B$. This implies that vB is simple for every $v \neq 0$ in V_λ and hence $V_\lambda B \subset S(W_B)$. Therefore $\sum V_\lambda B \subset S(W_B)$ and consequently $S(W_B) = \sum V_\lambda B$.

Step 3. $V_{\lambda}B$ ($\lambda \in \Lambda$) is a homogeneous component of $S(W_B)$.

Take now a non-zero element, say v_{λ} , in V_{λ} . Then, as has been proved above, $v_{\lambda}B$ is a simple right *B*-module. Assume that *U* is a simple *B*-submodule of *W* such that $v_{\lambda}B \cong U$. Since W_B is semi-injective and since *A* is dense in *C* relative to the finite topology by Theorem 1, there exists an element *a* of *A* such that $U=av_{\lambda}B$.

Conversely, for any element a_0 of A we have either $a_0v_{\lambda}B \cong v_{\lambda}B$ or $a_0v_{\lambda}B=0$, because $v_{\lambda}B$ is simple. Therefore the homogeneous component of $S(W_B)$ including $v_{\lambda}B$ coincides with $V_{\lambda}B$.

Step 4. $S(W_B) = \sum \bigoplus V_{\lambda}B.$

Notice that if $\lambda \neq \mu$ then $v_{\lambda}B \not\cong v_{\mu}B$, where v_{λ} (resp. v_{μ}) is a non-zero element of V_{λ} (resp. V_{μ}). Because, if $v_{\lambda}B \cong v_{\mu}B$ then, in the same way as in Step 3, there is an element *a* of *A* such that $v_{\mu}B = av_{\lambda}B$. Hence $v_{\mu} = av_{\lambda}b$ for some *b* in *B*, whence it follows that $V_{\mu} = V_{\lambda}b \cong V_{\lambda}$, a contradiction.

Therefore, if $\lambda \neq \mu$ then the type of $V_{\lambda}B$ is different from one of

472

 $V_{\mu}B$. Consequently $S(W_B) = \sum \bigoplus V_{\lambda}B$ (Cf. [1, p. 80]). Thus the proof of Theorem 2 is completed.

The following is a direct consequence of Theorems 1 and 2.

Corollary 1. Let A be a left cogenerator ring. Then A_A is absolutely pure and $S(A_A) \subset A_A$.

Corollary 2. Assume that $_{A}W$ is an injective cogenerator. Then $S(_{A}W) = S(W_{B})$ where $B = \text{End}(_{A}W)$.

Proof. Obviously by Theorem 2 $S(W_B) = \sum V_{\lambda}B \subset S(_AW)$. Conversely assume that V is a simple A-submodule of W. Then $V \cong V_{\mu}$ for some $\mu \in \Lambda$, and by injectivity of $_AW$ we can find an element b of B such that $V = V_{\mu}b$. Hence $S(_AW) \subset \sum V_{\lambda}B = S(W_B)$ and consequently $S(_AW) = S(W_B)$.

References

- [1] E. A. Behrens: Ring Theory. Academic Press (1972).
- [2] C. Faith: Lectures on Injective Modules and Quotient Rings. Springer-Verlag (1967).
- [3] K. Morita: Localizations in categories of modules. I. Math. Z., 114, 121-144 (1970).
- [4] T. Onodera: Linearly compact modules and cogenerators. J. of the Faculty of Science, Hokkaido University, Series I, 22, Nos. 3-4, 116-125 (1972).
- [5] B. L. Osofsky: A generalization of quasi-Frobenius rings. J. of Algebra, 4, 373-387 (1966).

No. 7]