106. Modified Korteweg - de Vries Equation and Scattering Theory

By Shunichi Tanaka
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, m. J. A., Sept. 12, 1972)

1. Introduction. Gardner, Greene, Kruskal and Miura (G. G. K. M.) [1] have discovered that the initial value problem for the Korteweg - de Vries (KdV) equation

$$
v_{t}+6 v v_{x}+v_{x x x}=0
$$

(subscripts x and t denoting partial differentiations) may be exactly solved by the direct and inverse scattering theory of the one dimensional Schrödinger operator. Zakharov and Shabat [9] have then developed an analogue of G. G. K. M. theory for the non-linear Schrödinger equation
(1)

$$
i u_{t}+2^{-1} u_{x x}+|u|^{2} u=0
$$

relating it to the scattering theory of the differential operator

$$
L_{u}=i\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] D-i\left[\begin{array}{ll}
0 & \mathrm{u} \\
u^{*} & 0
\end{array}\right] \quad D=d / d x
$$

with complex potential u (u^{*} being its complex conjugate).
Recently Wadati [8] and the present author [7] have noted that the modified KdV equation
(2) $\quad v_{t}+6 v^{2} v_{x}+v_{x x x}=0$
(v being real-valued) can be also related to the operator L_{u}. In [7] a family of particular solutions of (2) have been explicitly constructed based on this relation. In this paper we supplement [7] with the description of more general aspect of the theory.
2. Evolution equations for linear operators. Lax [3], [4] has rewritten the KdV equation into the evolution equation for the Scrödinger operator. An analogous result also holds for equation (2): Put

$$
A_{v}=-4 D^{3}+3\left[\begin{array}{cc}
-v^{2} & i v_{x} \\
i v_{x} & -v^{2}
\end{array}\right] D+3 D\left[\begin{array}{cc}
-v^{2} & i v_{x} \\
i v_{x} & -v^{2}
\end{array}\right]
$$

where v is a real valued function. Then by direct calculation, the equation (2) is rewritten into the form
(3) $\quad\left(L_{i v}\right)_{t}=\left[A_{v}, L_{i v}\right]=A_{v} L_{i v}-L_{i v} A_{v}$.

This expression has been obtained in [7].
Remark 1. Put

$$
B_{u}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left(D^{2}+2^{-1}|u|^{2}\right)-2^{-1}\left[\begin{array}{cc}
0 & u \\
u^{*} & 0
\end{array}\right] D-2^{-1} D\left[\begin{array}{ll}
0 & u \\
u^{*} & 0
\end{array}\right]
$$

and

$$
B_{u}^{\prime}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left(D^{2}-2^{-1}|u|^{2}\right)-2^{-1} i\left[\begin{array}{ll}
0 & u \\
u^{*} & 0
\end{array}\right] D-2^{-1} i D\left[\begin{array}{ll}
0 & u \\
u^{*} & 0
\end{array}\right]
$$

Then (1) is written as

$$
\left(L_{u}\right)_{t}=i\left[B_{u}, L_{u}\right]
$$

and the argument of section 4 works also for (1). The equation

$$
i u_{t}+2^{-1} u_{x x}-|u|^{2} u=0
$$

is written as

$$
\left(L_{u}^{\prime}\right)_{t}=i\left[B_{u}^{\prime}, L_{u}^{\prime}\right]
$$

where

$$
L_{u}^{\prime}=i\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] D+\left[\begin{array}{ll}
0 & u \\
u^{*} & 0
\end{array}\right] .
$$

L_{u}^{\prime} is essentially one dimensional Dirac operator.
Remark 2. In [9], (1) has been written as an evolution equation for the operator

$$
M_{u}=i\left[\begin{array}{cc}
1+p & 0 \\
0 & 1-p
\end{array}\right] D+\left[\begin{array}{ll}
0 & u^{*} \\
u & 0
\end{array}\right]
$$

(p being a real constant). Wadati [8] has written (2) as an evolution equation for $M_{i v}$.
3. Jost function and the scattering data. We follow [9] for the generality of scattering theory of L_{u}. Consider the eigenvalue problem (4) $\quad L_{u} y=\zeta y \quad y={ }^{t}\left(y_{1}, y_{2}\right)$.

Then if y is a solution of (4), $y^{\#}=^{t}\left(y_{2}^{*},-y_{1}^{*}\right)$ is a solution of (4), ζ being replaced by ζ^{*}. If u is integrable, one can show that for each $\zeta=\xi+i \eta$, $\eta \geq 0$, there exist unique solutions (called Jost functions) ϕ and ψ of (4) which behave as ${ }^{t}(1,0) \exp (-i \zeta x), x \rightarrow-\infty$, and ${ }^{t}(0,1) \exp (i \zeta x), x \rightarrow \infty$, respectively. ϕ and ψ are analytic in ζ, $\operatorname{Im} \zeta>0$. If $\zeta=\xi$ real, then ψ and $\psi^{\#}$ are independent solutions of (4). So one can express ϕ as (5)

$$
\phi=a(\xi) \psi^{\#}+b(\xi) \psi .
$$

We have $a(\xi)=\operatorname{det}(\phi, \psi)$ and the function $a(\xi)$ can be extended to the analytic function $a(\zeta), \operatorname{Im} \zeta>0$. Shabat [5] showed that under the additional integrability condition on u, one can express $\alpha(\zeta)$ as

$$
a(\zeta)=1+\int_{0}^{\infty} f(t) \exp (i \zeta t) d t
$$

for some f in $L^{1}(0, \infty)$. If moreover $U(x) \exp (\varepsilon|x|)$ is integrable for some $\varepsilon>0$, then $\alpha(\zeta)$ has only finite number of zeros in $\operatorname{Im} \zeta>0$. Suppose further that all of zeros in $\operatorname{Im} \zeta>0$ of $a(\zeta)$ are simple and denote them by $\zeta_{1}, \cdots, \zeta_{N}$. For $\zeta=\zeta_{j}$, Jost functions are linearly dependent:
(6)

$$
\phi\left(x, \zeta_{j}\right)=d_{j} \psi\left(x, \zeta_{j}\right) .
$$

By the asymptotic property, they are square-integrable. We have

$$
\begin{equation*}
a^{\prime}\left(\zeta_{j}\right)=-2 i d_{j} \int_{-\infty}^{\infty} \psi_{1} \psi_{2}\left(x, \zeta_{j}\right) d x \tag{7}
\end{equation*}
$$

Put $c_{j}=d_{j} / a^{\prime}\left(\zeta_{j}\right)$. The functions $a(\zeta), b(\xi)$ and the numbers c_{1}, \cdots, c_{N}
are called the scattering data of the operator L_{u}.
Suppose that $u=i v$, purely imaginary. Then
(8) $\quad \phi\left(-\zeta^{*}\right)={ }^{t}\left(\phi_{1}^{*}(\zeta),-\phi_{2}^{*}(\zeta)\right) \quad \psi\left(-\zeta^{*}\right)=^{t}\left(-\psi_{1}^{*}(\zeta), \psi_{2}^{*}(\zeta)\right)$.

So we have $a^{*}(\zeta)=a\left(-\zeta^{*}\right)$. Let M be a non-negative integer such that $2 M \leq N$. Let σ be the permutation among natural numbers between 1 and N defined by $\sigma(j)=j+1, j$ odd $\leq 2 M ; \sigma(j)=j-1, j$ even $\leq 2 M ; \sigma(j)$ $=j, j>2 M$. Then $\zeta_{\sigma(j)}=-\zeta_{j}^{*}$. By (7) and (8), we have $c_{\sigma(j)}=c_{j}^{*}$. It is also easy to show that $b^{*}(\xi)=-b(-\xi)$. Converse statement will be formulated in section 5 under the assumption that $b(\xi) \equiv 0$.
4. Time variation of the scattering data. Let us now suppose that smooth real-valued function $v=v(t)=v(x, t)$ is a solution of (2) which is rapidly decreasing in x for each t. We shall derive the time dependence of the scattering data of $L_{i v(t)}$. In this section corresponding Jost functions and scattering data contain the additional variable t.

We differentiate the relation $L_{i v} \phi=\zeta \phi$ with respect to t. Making use of (3), we see that $\phi_{t}-A_{v} \phi$ again satisfies (4). Because it behaves like $4 i \zeta^{3} \cdot{ }^{t}(1,0) \exp (-i \zeta x)$ as $x \rightarrow-\infty$, by the uniqueness of Jost functions, we have the differential equation which show the time variation of the Jost function :

$$
\phi_{t}-A_{v} \phi=4 i \zeta^{3} \phi .
$$

Putting (5) into this equation for $\zeta=\xi$ and then eliminating ψ_{t} and ψ_{t}^{*} by the similar differential equations, we get an identity

$$
a_{t} \psi^{\#}+\left(b_{t}-8 i \xi^{3} b\right) \psi=0 .
$$

Thus we have

$$
a(\xi, t)=a(\xi, 0) \quad b(\xi, t)=b(\xi, 0) \exp \left(8 i \xi^{3} t\right)
$$

$a(\zeta, t)$ is independent of t and so are its zeros. Differentiation of (6) with respect to t leads to

$$
c_{j}(t)=c_{j}(0) \exp \left(8 i \zeta_{j}^{3} t\right)
$$

5. Construction of generalized soliton solutions. As in [1] and [9], application of the inverse scattering theory leads to the construction of a family of particular solutions including the soliton solutions as the simplest case.

Let σ be the permutation defined in section 3 and $\zeta_{j}, c_{j}(0)(1 \leq j \leq N)$ satisfy the conditions formulated there with respect to σ. Put

$$
c_{j}=c_{j}(t)=c_{j}(0) \exp \left(8 i \zeta_{j}^{3} t\right) \quad \lambda_{j}=\lambda_{j}(x, t)=c_{j}(t)^{1 / 2} \exp \left(i \zeta_{j} x\right)
$$

Theorem. Let $\psi_{1 j}(x, t)$ and $\psi_{2 j}(x, t)$ be the solution of the system of $2 N$ linear algebraic equations

$$
\begin{gather*}
\psi_{1 j}+\sum_{k} \lambda_{j} \lambda_{k}^{*}\left(\zeta_{j}-\zeta_{k}^{*}\right)^{-1} \psi_{2 k}^{*}=0 \\
-\Sigma_{k} \lambda_{k} \lambda_{j}^{*}\left(\zeta_{j}^{*}-\zeta_{k}\right)^{-1} \psi_{1 k}+\psi_{2 j}^{*}=\lambda_{j}^{*} . \tag{9}
\end{gather*} \quad(1 \leq j \leq N)
$$

Then

$$
u(x, t)=-2 i \Sigma_{j} \lambda_{j}^{*}(x, t) \psi_{2 j}^{*}(x, t)
$$

is purely imaginary and $v(x, t)=i^{-1} u(x, t)$ is a solution of (2).

Proof of this theorem is similar to that of [6] where analogous result for the KdV equation has been described. We show first that the coefficient matrix of (9) is non-degenerate. The relations $L_{i v} \psi_{j}$ $=\zeta_{j} \psi_{j}$ for $\psi_{j}={ }^{t}\left(\psi_{1 j}, \psi_{2 j}\right)$ are then derived (See Kay and Moses [2] where analogous results for the Schrödinger operator are proved). The formulas for the derivatives of v, for example

$$
v_{t}=16 i \Sigma_{j}\left(-\zeta_{j}^{3} \psi_{1 j}^{2}+\zeta_{j}^{* 3} \psi_{2 j}^{* 2}\right),
$$

are then obtained. See [7] for the detail. The system of equations (9) has been obtained in [9] where analogous construction for the equation (1) has been discussed. We can show that the functions constructed there in fact satisfy the equation (1) by the method described here.

References

[1] O. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura: A method for solving the Korteweg-de Vries equations. Phys. Rev. Letters, 19, 1095-1097 (1967).
[2] I. Kay and H. E. Moses: Reflectionless transmission through dielectrics and scattering potentials. J. of Appl. Phys., 27, 1503-1508 (1956).
[3] P. D. Lax: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21, 467-490 (1968).
[4] P. D. Lax: Nonlinear partial differential equations of evoluiton. Actes Congrès intern. Math., Tome 2, 831-840 (1970).
[5] A. B. Shabat: One dimensional scattering theory. Differential equations, 8, 164-178 (1972) (in Russian).
[6] S. Tanaka: On the N-tuple wave solutions of the Korteweg-de Vries equations (to appear).
[7] -: Some remarks on the modified Korteweg - de Vries equations (to appear).
[8] M. Wadati: The exact solution of the modified Korteweg - de Vries equation. J. of Phys. Soc. Japan, 32, 1681 (1972).
[9] V. E. Zakharov and A. B. Shabat: Exact theory of two-dimensional selffocussing and one-dimensional self-modulation of waves in nonlinear media. J. of Experimental and Theoretical Phys., 61, 118-134 (1971) (in Russian).

