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1. Introduction. Gardner, Greene, Kruskal and Miura (G. G.
K.M.) [1] have discovered that the initial value problem or the
Korteweg de Vries (KdV) equation

v+6vv+v=O
(subscripts x and t denoting partial differentiations) may be exactly
solved by the direct and inverse scattering theory of the one dimensional
SchrSdinger operator. Zakharov and Shabat [9] have then developed
an analogue of G.G.K.M. theory for the non-linear SchrSdinger
equation
( 1 ) iut + 2-IUxx -[U ]2 U-- 0
relating it to the scattering theory of the differential operator

L-- 0 --1 u* 0

with complex potential u (u* being its complex conjugate).
Recently Wadati [8] and the present author [7] have noted that the

modified KdV equation
( 2 v+6v2v+v=O
(v being real-valued) can be also related to the operator L. In [7] a

family of particular solutions of (2) have been explicitly constructed
based on this relation. In this paper we supplement [7] with the
description of more general aspect of the theory.

2. Evolution equations for linear operators. Lax [3], [4] has
rewritten the KdV equation into the evolution equation for the SerSd-
inger operator. An analogous result also holds for equation (2): Put

--v iv]D+ 3DA= --4D + 3
iv --vA --vA

where v is a real valued function. Then by direct calculation, the equa-

tion (2) is rewritten into the form
( 3 ) (L)t-- [A, L] AvL,--LoA.
This expression has been obtained in [7].

Remark 1. Put

B-- 0 --1 * 0 * 0
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and

B,_ I1 O](D2_2_l.u 2)_2_li[O UlD_2_liD[O u]0 --1 u* 0 u* 0
Then (1) is written as

(Lu)t=i[B,L]
and the argument o section 4 works also or (1). The equation

iut+2-Ux--lUlu---O
is written as

where
(L) --i[B, L]

u/[u, 0].
L’ is essentially one dimensionM Dirc operator.

Remark 2. In [9], (1) has been written as an evolution equation
for the operator

0 1-p
(p being a real constant). Wadati [8] has written (2) as an evolution
equation for Mo.. lost function and the scattering data. We ollow [9] or the
generality of scattering theory of L. Consider the eigenvalue problem
( 4 ) Ly y y t(y, y).
Then if y is a solution of (4), y:t(y, _y) is a solution of (4), being

replaced by 5". If u is integrable, one can show that for each=+i,
0, there exist unique solutions (called Jost functions) and of (4)
which behave as t(1, 0) exp (--ix), x--, and t(0, 1) exp (ix), x,
respectively. and are analytic in 5, Im 50. If 5= real, then
and are independent solutions of (4). So one can express as
5 ) =a()+ + b()+.
We have a()=det (, ) and the function a() can be extended to the
analytic function a(), Im 0. Shabat [5] showed that under the
additional integrability condition on u, one can express a() as

a(5) =1 +.[ f(t)exp (i:t)dt

for some f in L(0, ). If moreover U(x) exp (e[xl) is integrable or
some z 0, then a(5) has only finite number of zeros in Im 5 0. Suppose
further that all of zeros in Im 50 of a(5) are simple and denote them
by , ..., . For =, Jost unctions are linearly dependent:
( 6 (x, 5)= d+(x,
By the asymptotic property, they are square-integrable. We have

Put c= d/a’(5). The unctions a(5) b() and the numbers c, ..., c
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are called the scattering data of the operator L.
Suppose that u--iv, purely imaginary. Then

So we have a*() a(- 5*). Let M be a non-negative integer such that
2M<_N. Let a be the permutation among natural numbers between 1
and N defined by a(])-]+ 1, ] odd_<2M; a(])-]--1, ] even <_2M a(])
=], ]>2M. Then ()=--5’. By (7) and (8), we have c()=c. It is
also easy to show that b*()---b(-). Converse statement will be
formulated in section 5 under the assumption that b()--0.

4. Time variation of the scattering data. Let us now suppose
that smooth real-valued function v--v(t)--v(x,t) is a solution of (2)
which is rapidly decreasing in x for each t. We shall derive the time
dependence of the scattering data o L,(). In this section correspond-
ing Jost unctions and scattering data contain the additional variable t.

We differentiate the relation L-- with respect to t. Making
use of (3), we see that Ct--Av again satisfies (4). Because it behaves
like 4i.t(1, 0) exp (--ix) as x---c, by the uniqueness of Jost unc-
tions, we have the differential equation which show the time variation
of the Jost tunction"

Putting (5) into this equation for = and then eliminating and
by the similar differential equations, we get an identity

at - (b 8ib)= O.
Thus we have

a(, t)-a(, 0) b(, t)-b(, 0) exp (8iat).
a(, t) is independent of t and so are its zeros. Differentiation of (6)
with respect to t leads to

c(t)= c(0) exp (8i.t).
5. Construction of generalized soliton solutions. As in [1] and

[9], application of the inverse scattering theory leads to the construc-
tion of a family ot particular solutions including the soliton solutions
as the simplest case.

Let a be the permutation defined in section 3 and , c(0) (I<_]_<N)
satisfy the conditions formulated there with respect to a. Put

c-c(t)-c(O) exp (8i}t) =2(x, t)-c(t)/ exp (ix).
Theorem. Let (x, t) and p(x, t) be the solution of the system

of 2N linear algebraic equations

( 9 ) ’lJ -[- ’/2J2(J )-lf/-- 0
(1_j_N)+ %5=

Then
u(x, t)-- --2iXs](x, t)4x(x, t)

is purely imaginary and v(x, t)=i-u(x, t) is a solution of (2).
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Proof o this theorem is similar to that of [6] where analogous
result for the KdV equation hs been described. We show first that
the coefficient matrix of (9) is non-degenerate. The relations L=or _t(,) are then derived (See Kay and Moses [2] where
analogous results or the SchrSdinger operator are proved). The or-
mulas or the derivatives of v, or example

vt 16iX( r*3*

are then obtained. See [7] or the detail. The system o equations (9)
has been obtained in [9] where analogous construction or the equation
(1) has been discussed. We can show that the unctions constructed
there in act satisfy the equation (1) by the method described here.
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