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1. Introduction. Hirsch [3] proves that an operator V in a
Banach space is the "cogenerator" lim_0Ja of a pseudo-resolvent J
satisfying lim_0 2J=0 i and only if V is the "generator" lim (J
--1) of a pseudo-resolvent J satisfying lim 2J-1 0. He notices a
dual relation between J and J. For semigroups, such a duality is not
obtained between infinitesimal generators (i.g.) and potential operators
(p.o.). However, the situation is rather simple in the case of contrac-
tion semigroups in Hilbert spaces, which is implicit in Hirsch [2]. In
this note we give the result more explicitly, and also give a connection
with Phillips’ characterization of i.g. Further we consider contrac-
tion semigroups in Banach spaces.

2. Hilbert space. Let be a Hilbert space (real or complex).
We mean by a contraction semigroup a strongly continuous semigroup
of linear contraction operators on . A contraction semigroup Tt with
resolvent Ja(>0) and i.g. A is said to admit a p.o. if the set of f
such that Jf strongly converges as -*0 is dense in . If this is the
case, the operator V defined by the limit is called the p.o. and satisfies
V----A- (Yosida [11]). An operator A is called dissipative if
Re (f, Af)_O for all f e (A), and maximal dissipative if in addition
no proper extension of it is dissipative. The Cayley transform C of A
is defined by C=(I+A)(1--A)- (Phillips [5]). ,!)t, and denote
domain, range, and null space of an operator, respectively.

Theorem 1. Let A be a linear operator in . Then the follow-
ing six conditions are equivalent"

( ) A is the i.g. of a contraction semigroup admitting a p.o.
-A is the p.o. of a contraction semigroup.
A is maximal dissipative with (A) and Y(A) both dense.
A is dissipative, Y(1--A)=, and (A) and Yt(A) are both

(l-A)- is defined on . and the Cayley transform C of A is
a contraction operator with (C+ 1)= F(C- 1)= 0.

(vi) There is a linear contraction operator C with (C)= and
(C+ 1) (C- 1) 0 such that A (C- 1)(C+ 1)-.

Suppose that the above conditions are met, and let T1) and T) be
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the semigroups in (i) and (ii), respectively. Let A(), V), and J?) be
the i.g., p.o., and resolvent of T? and let C() be the Cayley transform
of A()(i= 1, 2). Then, we have

C()= (V()_ 1)(V() + 1)-.
V()- _A(),

j?=l(
( 4 ) C ) C).

Remark. The property (C+1)=0 in Conditions (v) and (vi) can
be replaced by denseness of iR(C+ 1), since (C+ 1)=(C* + 1) by [9]
p. 8. Similarly, we can replace (C-1)= 0 by denseness of (C-1).

Proof. It is enough to combine together the results of Yosida
[10] [11], Phillips [5], and Hirsch [2] [3]. It is found by Phillips [5]
that the following five conditions are equivalent: (i)’ A is the i.g. of a
contraction semigroup; (iii)’ A is maximal dissipative with dense
domain; (iv)’ A is dissipative with dense domain and (1-A)=; (v)’
(l--A)- is defined on and the Cayley transform C of A is a contrac-
tion with (C+1)=0; (vi)’ there is a linear contraction operator C
with (C)= and (C+ 1)=0 such that A=(C--1)(C+ 1)-. Keeping
this equivalence in mind and recalling that a contraction semigroup
admits a p.o. if and only if the i.g. has dense range (Yosida [11]), we
see the equivalence of (i), (iii), (iv), (v) and (vi). It remains to prove
the equivalence of (i) and (ii). Suppose that (i) holds for A, and let J
and V be its resolvent and p.o. We have JfO as0 for every f.
We see that (+ V)- is defined on X since ] + V= (1--A)V. Further
we have (+ V)-=(1/)(1--(1/)J/). Hence (+ V)-ff as for
every f. Now, since is Hilbert, we can prove []ZJ-I[[I for all
#)0. In fact, the contraction property of the Cayley transform of

-A means a stronger result J-(1/2)[1/2. Hence, by the Hille-
Yosida theorem, --V is the i.g. of a contraction semigroup, that is,
(ii) holds. This argument also shows that (ii) implies (i). The rela-
tions (2) and (3) are now obvious. Since (1-A)-= V(V+ 1)-, we get
(1) and then (4) follows from (1) and (2). The proof is complete.

Remark. Let E be the real L space on R. Using the notations
of Theorem 1, we can prove that if T) is nonnegative, T) is not
necessarily nonnegative. This is the case if A() is the closure of
B=d/dx or d/dx with (B) being the C functions with compact sup-
ports, since ((Bf)+,f)O does not hold for f0, f0. Note that
((A(’f) +, f)=(g+,A()g) for g=A(’f, and see [6] for this criterion.

2. Banach space. Let be a Banach space (real or complex).

(i)

We have for i-]
(2)

(3)
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In this case, Theorem 1 is not valid. However, the proof o Theorem
1 reveals the following fact.

Theorem 2. Suppose that (i) holds and let J be the correspond-
ing resolvent. Then, (ii) holds if and only if

(vii) IIJ-lll__<l for each

If (ii) holds, then the resolvent J of the semigroup in (ii) satisfies

Another partial generalization of heorem 1 is he following.
Define

r(f, g)-- lim (1f+s II-II f II and r’(f,
0+

for each air of f and g in .
Theorem 3. Let A be liea operator i . The, the ollow-

ig eoditio (viii) i eqiwlet to (i), hile (ix) i eqlet to (ii)"
(viii) (A) d (A) re both gee, (1--A)-,

( 5 ) v’(f, Af)0 for f e (A).
(ix) (A) and (A) are both dense, (1-A)-, and

( 6 ) r’(Af, f)0 for f e (A).
Proof. The equivalence of (i) and (viii) is essentially due to

Hasegawa [1] (see [7] p. 439). We observe in [7] p. 440 that v’(f, g)g 0
if and only if 2f g 2f-- g for all 2 0. Hence, the equivalence of
(ii) and (ix) is essentially the result of Hirsch [2] p. 1487.

Theorem 3 remains valid if we replace r’(f,g) by the semi-
inner-product [g, f] of Lumer-Phillips [5]. If is Hilbert, then r’(f, g)
=Re (f, g)/]]f[[ for f # 0, and hence each of the properties (5) and (6)
is equivalent to dissipativeness. Thus Theorem 3 furnishes another
proof of the equivalence of (i), (ii) and (iv) in Theorem 1.

Unlike the case of Hilbert space, any one of Conditions (viii) and
(ix) does not imply the other in general. For example, let
=C0(-, +) be the space of real-valued continuous functions

vanishing at with the norm of uniform convergence, and let Af
=f’ with (A)-{f’f and f’e} or Af-f" with (A)-{f’f and

f"e E}. Then, A satisfies (viii) by [8]. But A does not satisfy (6),
which is proved by using the expression of r’ in C0(-, +) in [6]
p. 432. Also (ix) is valid with --V-A- in place of A, while
r’(f,- Vf)0 does not hold.

Even if A satisfies (5) with domain and range both dense, and is
maximal among such operators, it does not necessarily satisfy (1-A)
=E. An operator A in the space E=C0(0, +) defined by Af=f’
with (A)-{f" f and f’ e } serves as an example for this. The proof
is analogous to [4] p. 688.
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