145. Analogue of Fourier's Method for Korteweg - de Vries Equation

By Shunichi Tanaka
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, m. J. A., Nov. 13, 1972)

1. Introduction. In this paper we study the Kortewegde Vries (KdV) equation
(1) $\quad u_{t}-6 u u_{x}+u_{x x x}=0 \quad u=u(t)=u(x, t)-\infty<x, t<\infty$
for rapidly decreasing initial data. Gardner, Greene, Kruskal and Miura (G.G.K.M.) [2] have associated one dimensional Schrödinger operators $L_{u(t)}=-(d / d x)^{2}+u(t)$ to a solution of (1). They have found a simple formula describing the time variation of scattering data of $L_{u(t)}$. This paper is concerned with converse statement which may be viewed as a non-linear analogue of Fourier's method for solving linear partial differential equations of mathematical physics: Given the initial value one determine the scattering data of $L_{u(0)}$. Define scattering data for each t according to the formula of G.G.K.M. Using inverse scattering theory, one can construct potential $u(x, t)$ with prescribed scattering data for each t. Then $u(x, t)$ is a solution of (1).

Throughout the paper subscripts with independent variables denote partial differentiations. Integrations are taken over ($-\infty, \infty$) unless explicitly indicated.
2. Preparation from scattering theory. Consider one dimensional Schrödinger equation
(2) $-\phi_{x x}+u(x) \phi=\zeta^{2} \phi$.
Under the assumption that $(1+|x|) u(x)$ is integrable, the inverse scattering theory for (2) has been solved by Marchenko for the half line ($0, \infty$) and then the case of the infinite interval has been treated by Faddeev [1]. We follow [1] in this paper.

For each $\zeta=\xi+i \eta, \eta \geq 0$, there exist unique solutions $f_{ \pm}(x, \zeta)$ which behave like $\exp (\pm i \zeta x)$ as $x \rightarrow \pm \infty$. They are called Jost solutions of (2). Jost solutions are analytic in ζ, $\operatorname{Im} \zeta>0$. If $\zeta=\xi$ non-zero real, then f_{+}and its complex conjugate f_{+}^{*} are independent solutions of (2). One can express f_{-}as $f_{-}=a(\xi) f_{+}^{*}+b(\xi) f_{+} . a(\xi)$ is limiting value of a function $\alpha(\zeta)$ analytic in ζ, $\operatorname{Im} \zeta>0$. The (right) reflection coefficient $r(\xi)=b(\xi) a(\xi)^{-1}$ is defined for $\xi \neq 0$ and its absolute value is bounded by 1. $a(\zeta)$ has only a finite numbers of zeros. They are all simple and purely imaginary. We denote them by $i \eta_{1}, \cdots, i \eta_{N} . f_{ \pm}$are linearly dependent for $\zeta=i \eta_{j}$ and are square integrable because of the asymptotic
property. Put $c_{j}^{-1}=\int f_{+}\left(x, i \eta_{j}\right)^{2} d x$. The triplet $s=\left\{r(\xi), \eta_{j}, c_{j}\right\}$ is called the scattering data of the potential u. The coefficients $a(\zeta)$ and $b(\xi)$ in turn can be uniquely reconstructed by the scattering data.

Put $h_{ \pm}(x, \zeta)=\exp (\mp i \zeta x) f_{+}(x, \zeta)$. Then $h_{ \pm}$are expressed as

$$
h_{ \pm}(x, \zeta)=1 \pm \int_{0}^{ \pm \infty} B_{ \pm}(x, y) \exp (\pm 2 i \zeta y) d y
$$

Coefficients $a(\zeta)$ and $b(\xi)$ have the following integral representations:

$$
\begin{aligned}
a(\zeta) & =1-(2 i \zeta)^{-1} \int u(y) d y-(2 i \zeta)^{-1} \int_{0}^{\infty} \Pi_{2}(y) \exp (2 i \zeta y) d y \\
\Pi_{2}(y) & =\int u(x) B_{-}(x,-y) d x \\
b(\xi) & =(2 i \xi)^{-1} \int \Pi_{1}(y) \exp (-2 i \xi y) d y \\
\Pi_{1}(y) & =u(y)+\int_{y}^{\infty} u(x) B_{-}(x, y-x) d x
\end{aligned}
$$

Put

$$
\begin{equation*}
F(y)=\pi^{-1} \int r(\xi) \exp (2 i \xi y) d \xi \tag{4}
\end{equation*}
$$

Then B_{+}satisfies the Marchenko equation

$$
\begin{equation*}
B_{+}(x, y)+\int_{0}^{\infty} \Omega(x+y+s) B_{+}(x, s) d s+\Omega(x+y)=0 \tag{5}
\end{equation*}
$$

and the potential u is reconstructed by the formula

$$
u(x)=-\frac{\partial}{\partial x} B_{+}(x, 0)
$$

If u is in \mathcal{S}, Schwartz space on $(-\infty, \infty)$, then $B_{ \pm}(x, y)$ are infinitely differentiable. All of their derivatives are dominated by functions like $\alpha(x+y)$, where $\alpha(x)$ is bounded, decreasing (increasing) and rapidly decreasing as $x \rightarrow \infty(x \rightarrow-\infty)$ for $B_{+}\left(B_{-}\right)$. Infinite differentiability in ξ of $h_{ \pm}(x, \xi), h_{ \pm}^{\prime}(x, \xi), \xi a(\xi)$ and $\xi b(\xi)$ then follows. $\Pi_{1}(y)$ is in \mathcal{S} and $\Pi_{2}(y)(y \geq 0)$ is infinitely differentiable with each derivative rapidly decreasing as $y \rightarrow \infty$. So $\xi b(\xi)$ and $r(\xi)$ are in \mathcal{S}.

Conversely let s satisfy the condition to be a scattering data of a potential $u(x)$. Moreover let $F(y)$, the Fourier transform of $r(\xi)$, be infinitely differentiable and the conditions

$$
\begin{equation*}
\int_{a}^{\infty}\left(1+|x|^{n}\right)\left|F^{(m)}(x)\right| d x<\infty \tag{6}
\end{equation*}
$$

hold for any m, n, a, together with their analogues for the left reflection coefficient. Then $u(x)$ is in \mathcal{S}.
3. Solution of the initial value problem. First put $L_{u}=-D^{2}+u$ and

$$
B_{u}=-4 D^{3}+3 u D+3 D u \quad(D=d / d x)
$$

For one parameter family of potential $u=u(t)=u(x, t)$, let $f_{ \pm}(x, \zeta ; t)$ and $s(t)$ be corresponding Jost functions and scattering data. Suppose u evolves according to the KdV equation written in the form due to Lax: $d L_{u} / d t=\left[B_{u}, L_{u}\right]=B_{u} L_{u}-L_{u} B_{u}$. Then (7 \pm)

$$
\left(f_{ \pm}\right)_{t}-B_{u} f_{ \pm}=4(\pm i \zeta)^{3} f_{ \pm}
$$

hold. These equations imply that $a(\zeta, t)$ is independent of t and so are its zeros. Formulas of G.G.K.M. [2]

$$
r(\xi, t)=r(\xi, 0) \exp \left(8 i \xi^{3} t\right) \quad c_{j}(t)=c_{j}(0) \exp \left(8 \eta_{j}^{3} t\right)
$$

follow (see also [3] and [4]).
Conversely let $u(x)$ be in \mathcal{S} and $s=\left\{r(\xi), \eta_{j}, c_{j}\right\}$ be its scattering data. Put $r(\xi, t)=r(\xi) \exp \left(8 i \xi^{3} t\right)$ and $c_{j}(t)=c_{j} \exp \left(8 \eta_{j}^{3} t\right)$. Then for each $t, s(t)$ $=\left\{r(\xi, t), \eta_{j}, c_{j}(t)\right\}$ satisfies the condition to be scattering data of potential $u(x, t)$ belonging to \mathcal{S}. To see this, put $a(\zeta, t)=a(\zeta)$ and $b(\xi, t)$ $=b(\xi) \exp \left(8 i \xi^{3} t\right)$ where coefficients $\alpha(\zeta)$ and $b(\xi)$ are associated with s. Since $r(\xi, 0)$ is in \mathcal{S}, so are $r(\xi, t)$ and its Fourier transform

$$
F(y, t)=\pi^{-1} \int r(\xi, t) \exp (2 i \xi y) d \xi
$$

for each t. Define Ω from $s(t)$ by (4). As $a(\xi, t)+b(\xi, t)$ is smooth at $\xi=0$, inverse problem for ($-\infty, \infty$) is solvable (Lemma 3.1 in [1]).

Next we prove the equation $(7+)$. Put $h(x, \zeta ; t)=\exp (-i \zeta t)$ $f_{+}(x, \zeta ; t)$ and let $B=B(x, y ; t)$ be connected with h by the formula $(3+)$. Then ($7+$) is equivalent to $h_{t}=g(x, \zeta ; t)$ where

$$
g=12 \zeta^{2} h_{x}-12 i \zeta h_{x x}-4 h_{x x x}+6 u\left(i \zeta h+h_{x}\right)+3 u_{x} h .
$$

By direct calculation, we have

$$
g=g(x, \zeta ; t)=\int_{0}^{\infty} C(x, y ; t) \exp (2 i \zeta y) d y
$$

where

$$
C=-B_{x x x}+3 u B_{x} .
$$

We obtain an integral equation for the kernel C :

$$
\begin{aligned}
& C(x, y ; t)+\int_{0}^{\infty} \Omega(x+y+s ; t) C(x, s ; t) d s \\
& \quad=\int_{0}^{\infty} \Omega_{x x x}(x+y+s ; t) B(x, s ; t) d s+\Omega_{x x x}(x+y ; t)
\end{aligned}
$$

We get the same integral equation for B_{t} by differentiation of Marchenko equation (5) with respect to t and the identity $\Omega_{t}+\Omega_{x x x}=0$. Therefore the kernel $B_{t}-C$ is a solution of homogenous equation associated with (5) known to have only trivial solution. $h_{t}=g$ and thus $(7+)$ are established. (7土) are in turn rewritten as $\left(d L_{u} / d t\right.$ $\left.-\left[B_{u}, L_{u}\right]\right) f_{ \pm}=0$. Consequently u is a solution of the KdV equation.

Details of proof will be published elsewhere.
Remark. Analogous result has been also formulated in Zakharov and Faddeev [5] by a different method.

References

[1] L. D. Faddeev: Properties of the S-matrix of the one-dimensional Schrödinger equation. Proc. Steklov Inst. Math., 73, 314-336 (1964) (in Russian).
[2] O. S. Gardner, J. M. Greene, M. Kruskal, and R. M. Miura: A method for solving the Korteweg - de Vries equations. Phys. Rev. Letters, 19, 1095-1097 (1967).
[3] P.D. Lax: Nonlinear partial differential equations of evolution. Actes Congrès intern. Mach., Tom 2, 831-840 (1970).
[4] S. Tanaka: Modified Korteweg-de Vries equation and scattering theory. Proc. Japan Acad., 48, 466-469 (1972).
[5] V. E. Zakharov and L. D. Faddeev: Korteweg - de Vries equation. A completely integrable Hamiltonian system. Functional analysis and its applications, 5, 18-27 (1971) (in Russian).

