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1. Introduction. In this paper we study the Korteweg-
de Vries (KdV) equation
( 1 ) u--6uu+u=O u=u(t)=u(x,t)--c.x,tc
or rapidly decreasing initial data. Gardner, Greene, Kruskal and
Miura (G.G.K.M.) [2] have associated one dimensional SchrSdinger
operators L(t)----(d/dx)zTu(t) to a solution of (1). They have ound
a simple ormula describing the time variation o scattering data. o
Lu(t). This paper is concerned with converse statement which may be
viewed as a non-linear analogue of Fourier’s method or solving linear
partial differential equations of mathematical physics" Given the initial
value one determine the scattering data of L(0). Define scattering data
or each t according to the ormula of G.G.K.M. Using inverse
scattering theory, one can construct potential u(x, t) with prescribed
scattering data or each t. Then u(x, t) is a solution of (1).

Throughout the paper subscripts with independent variables denote
partial differentiations. Integrations are taken over (- c, c) unless
explicitly indicated.

2, Preparation from scattering theory, Consider one dimen-
sional SchrSdinger equation
( 2 ) --xx+u(x)
Under the assumption that (1 +lxl)u(x) is integrable, the inverse scatter-
ing theory or (2) has been solved by Marchenko or the hal line (0,
and then the case of the infinite interval has been treated by Faddeev
[1]. We follow [1] in this paper.

For each {=/i1, 1>_0, there exist unique solutions f(x, ) which
behave like exp (+i{x)as x- +_ oo. They are called Jost solutions of
(2). Jost solutions are analytic in , Imp>0. If = non-zero real,
then f/ and its complex conjugate f+* are independent solutions.of (2).
One can express f_ as f_-a()f*+ +b()f+. a() is limiting value of
function a()analytic in , Im {>0. The (right) reflection coefficient
r()=b()a()- is defined for :/=0 and its absolute value is bounded by
1. a({) has only a finite numbers of zeros. They are all simple and
purely imaginary. We denote them by i],..., i]. f are linearly
dependent for i] and are square integrable because of the asymptotic
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property. Put c=Jf/(x,i)dx. The triplet s--{r(),;, c} is called

the scattering dat of the potential u. The coefficients a() nd b() in
turn can be uniquely reconstructed by the scattering data.

Put h(x, )=exp (--ix)f+(x, ). Then h are expressed as

(3_+) h(x, )-1+ B:(x,y)exp(+_2iy)dy.

Coefficients a() and b() have the ollowing integral representations:

a()-1-(2i)-[u(y)dy-(2i)-[ll(y) exp (2iy)dy

ll(y) --.[u(x)B_(x, y)dx

b()-(2i)-.[ll(y) exp (-2iy)dy

II(y)-u(y) /[u(x)B_(x, y-- x)dx.
Jy

F(y)-=-]r() exp (2iy)d

N

( 4 ) 9(y) c exp (-- 2]y) +F(y).
j=l

Then B/ satisfies the Marchenko equation

(5) B+(x,y)+f9(x/y+s)B+(x,s)ds+tO(X/y)--O
and the potential u is reconstructed by the ormula

u(x)- B/ (x, 0).
3x

If u is in q, Schwartz space on (-- ,c), then B+/-(x, y) are infinitely
differentiable. All o their derivatives are dominated by unctions
like a(x+ y), where a(x) is bounded, decreasing (increasing) and rapidly
decreasing as x-c (x-c) or B/(B_). Infinite differentiability in

o h(x, ), h(x, ), a() and b($) then ollows. ll(y) is in and
ll(y) (y>_O) is infinitely differentiable with each derivative rapidly
decreasing as y-c. So b() and r() are in .

Conversely let s satisfy the condition to be a scattering data o a
potential u(x). Moreover let F(y), the Fourier transform of r(), be
infinitely differentiable and the conditions

hold for any m, n, a, together with their analogues for the left reflec-
tion coefficient. Then u(x) is in 3.. Solution og the initial value problem. First put L D /u
and

B 4D +3uD+3Du (D d/dx).

Put
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For one parameter 2amily o potential u=u(t)--u(x, t), let f(x,;t)
and s(t) be corresponding Jost functions and scattering data. Suppose
u evolves according to the KdV equation written in the orm due to
Lax" dL/dt--[B,L]--BL--LuB. Then
(7 __+ ) (f)t-Bf --4( i)3f
hold. These equations imply that a(, t) is independent o t and so are
its zeros. Formulas o G.G.K.M. [2]

r(, t)-r($, 0) exp (Sight) c(t)-c(O) exp (8rib.t)
follow (see also [3] and [4]).

Conversely let u(x) be in and s--{r(), r/, c} be its scattering data.
Put r($, t)-r() exp (8it) and c(t)- c exp (8rit). Then for each t, s(t)
={r($, t), ], c(t)} satisfies the condition to be scattering data of poten-
tial u(x, t) belonging to . To see this, put a(, t)-a() and b(, t)
--b() exp (8it) where coefficients a() and b() are associated with s.
Since r(, 0) is in , so are r(, t) and its Fourier transform

F(y, t)---.[r(, t) exp (2iy)d

for each t. Define tO rom s(t) by (4). As a(, t)+ b(, t) is smooth at
--0, inverse problem or (-, c) is solvable (Lemma 3.1 in [1]).

Next we prove the equation (7+). Put h(x,; t)-exp(-it)
f+(x,;t) and let B--B(x,y;t) be connected with h by the formula
(3 +). Then (7 +) is equivalent to ht-- g(x, t) where

g-12h 12ih 4h+6u(ih+h) +3uh.
By direct calculation, we have

g(x, t)=[C(x, y; t) exp (2i[y)dyg--

where
C- --B+3uB.

We obtain an integral equation for the kernel C"

t) +[ 9(x+ + t)C(x,C(x, t)ds

We get the same integral equation 2or Bt by differentiation
Marchenko equation (5) with respect to t and the identity 9t
Therefore the kernel Bt--C is a solution of homogenous equation asso-
ciated with (5) known to have only trivial solution, ht--g and thus
(7+) are established. (7+) are in turn rewritten as (dL/dt
--[B,L])f+/---O. Consequently u is a solution of the KdV equation.

Details o proof will be published elsewhere.
Remark. Analogous result has been also ormulated in Zakharov

and Faddeev [5] by a different method.
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