162. Countable Structures for Uncountable Infinitary Languages

By Nobuyoshi Motohashi
Department of Mathematics, Gakushuin University, Tokyo
(Comm. by Kôsaku YosidA, m. J. A., Dec. 12, 1972)

In model theory of infinitary languages with countable conjunctions and finite strings of quantifiers in the sense of H. J. Keisler's book [3], we have some theorems which hold even in the case that there are uncountably many non-logical symbols, e.g. countable isomorphism theorem and countable definability theorem (cf. Scott [4], Chang [1] and Kueker [2]). Of course we have theorems which hold only in the case that there are at most countably many non-logical symbols, e.g. the existence theorem of Scott's sentence (cf. [3]).

In order to make clear the distinction between two kinds of theorems above mentioned we shall show that for each countable structure \mathfrak{A}, which is associated to an uncountable infinitary language L, there is a countable sublanguage L_{0} of L such that every formula in L is definable in \mathfrak{U} by a formula in L_{0}. We use the standard model theoretic terminology (cf. [2] and [3]). Let L be a first order language with countable conjunctions and finite strings of quantifiers and possibly uncountably many non-logical symbols. Then we have the following

Theorem. Let \mathfrak{A} be a countable structure for L. Then there is a countable sublanguage L_{0} of L such that for each formula $\varphi\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ in L there is a formula $\psi\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ in L_{0} such that

$$
\mathfrak{A} \vDash\left(\forall v_{1}\right)\left(\forall v_{2}\right) \cdots\left(\forall v_{n}\right)\left(\varphi\left(v_{1}, v_{2}, \cdots, v_{n}\right) \leftrightarrow \psi\left(v_{1}, v_{2}, \cdots, v_{n}\right)\right) .
$$

Proof. For each sequence $\sigma=\left\langle L^{\prime}, a_{1}, \cdots, a_{n}\right\rangle$, where L^{\prime} a countable sublanguage of L and a_{1}, \cdots, a_{n} are elements of $|\mathfrak{H}|$, let φ_{σ} be the Scott's sentence of the structure ($\mathfrak{H} \Gamma L^{\prime}, a_{1}, \cdots, a_{n}$) which is obtained from $\mathfrak{A} \Gamma L^{\prime}$, the reduct of \mathfrak{A} to L^{\prime}, by adding a_{1}, \cdots, a_{n} as new individuals. Then there is a formula $\varphi_{\sigma}\left(v_{1}, \cdots, v_{n}\right)$ in L^{\prime} such that $\varphi_{\sigma}=\varphi_{o}$ $\left(a_{1}, \cdots, a_{n}\right)$, i.e. the sentence φ_{σ} is obtained from the formula $\varphi_{\sigma}\left(v_{1}, \cdots, v_{n}\right)$ by replacing v_{1}, \cdots, v_{n} by a_{1}, \cdots, a_{n} respectively. (We identify the elements a_{i} in $|\mathfrak{Q}|$ and the constant symbols a_{i} corresponding to them.) Then for each b_{1}, \cdots, b_{n} in $|\mathfrak{R}|$, we have
(1) $\mathfrak{A} \vDash \varphi_{o}\left[b_{1}, \cdots, b_{n}\right] \Leftrightarrow\left(\mathfrak{H} \Gamma L^{\prime}, a_{1}, \cdots, a_{n}\right) \cong\left(\mathfrak{H} \Gamma L^{\prime}, b_{1}, \cdots, b_{n}\right)$.

Hence if $\sigma_{1}=\left\langle L_{1}, a_{1}, \cdots, a_{n}\right\rangle, \sigma_{2}=\left\langle L_{2}, a_{1}, \cdots, a_{n}\right\rangle$ and $L_{1} \subseteq L_{2}$, then we have
(2)

$$
\mathfrak{U} \vDash\left(\forall v_{1}\right) \cdots\left(\forall v_{n}\right)\left(\varphi_{\sigma_{2}}\left(v_{1}, \cdots, v_{n}\right) \rightarrow \varphi_{o_{1}}\left(v_{1}, \cdots, v_{n}\right)\right) .
$$

It follows that for each a_{1}, \cdots, a_{n} in $|\mathfrak{X}|$ there is a countable sublanguage L_{1} of L such that
(3) $\quad \mathfrak{A} \vDash\left(\forall v_{1}\right) \cdots\left(\forall v_{n}\right)\left(\varphi_{a_{1}}\left(v_{1}, \cdots, v_{n}\right) \leftrightarrow \varphi_{a_{2}}\left(v_{1}, \cdots, v_{n}\right)\right)$
holds for every $\sigma_{2}=\left\langle L_{2}, a_{1}, \cdots, a_{n}\right\rangle$ such that $L_{1} \subseteq L_{2}$, where $\sigma_{1}=\left\langle L_{1}, a_{1}, \cdots, a_{n}\right\rangle$, by (2) and the fact that $|\mathfrak{Q}|$ is countable. Since there are only countably many finite sequences of elements in |\{̛|, there is a countable sublanguage L_{0} of L such that

$$
\begin{equation*}
\mathfrak{A} \models\left(\forall v_{1}\right) \cdots\left(\forall v_{n}\right)\left(\varphi_{\sigma_{1}}\left(v_{1}, \cdots, v_{n}\right) \leftrightarrow \varphi_{\sigma}\left(v_{1}, \cdots, v_{n}\right)\right. \tag{4}
\end{equation*}
$$

holds for every a_{1}, \cdots, a_{n} in $|\mathfrak{Q}|$ and for every $\sigma=\left\langle L_{0}, a_{1}, \cdots, a_{n}\right\rangle$ and $\sigma_{1}=\left\langle L_{1}, a_{1}, \cdots, a_{n}\right\rangle$, where $L_{0} \subseteq L_{1}$. We want to show that this language L_{0} satisfies the conclusion of this theorem. Let $\varphi\left(v_{1}, \cdots, v_{n}\right)$ be a formula in L and $\psi\left(v_{1}, \cdots, v_{n}\right)$ be the disjunction of all the formulas $\varphi_{o}\left(v_{1}, \cdots, v_{n}\right)$ such that σ has the form $\left\langle L_{0}, a_{1}, \cdots, a_{n}\right\rangle$ for some a_{1}, \cdots, a_{n} such that $\mathfrak{A} \vDash \varphi\left[a_{1}, \cdots, a_{n}\right]$. Clearly $\psi\left(v_{1}, \cdots, v_{n}\right)$ is a formula in L_{0}. Let L_{1} be a countable sublanguage of L such that $L_{0} \subseteq L_{1}$ and $\varphi\left(v_{1}, \cdots, v_{n}\right) \in L_{1}$. Let b_{1}, \cdots, b_{n} be elements of $|\mathfrak{R}|$. Then by the definition of $\psi\left(v_{1}, \cdots, v_{n}\right)$, (1) and (4) we have

$$
\begin{aligned}
\mathfrak{U} \vDash \psi\left[b_{1}, \cdots, b_{n}\right] & \Leftrightarrow \mathfrak{U} \vDash \varphi_{\sigma}\left[b_{1}, \cdots, b_{n}\right] \text { for some } \\
& \sigma=\left\langle L_{0}, a_{1}, \cdots, a_{n}\right\rangle \text { such that } \mathfrak{A} \vDash \varphi\left[a_{1}, \cdots, a_{n}\right] \\
& \Leftrightarrow \mathfrak{A} \vDash \varphi_{\sigma}\left[b_{1}, \cdots, b_{n}\right] \text { for some } \\
& \sigma=\left\langle L_{1}, a_{1}, \cdots, a_{n}\right\rangle \text { such that } \mathfrak{A} \vDash \varphi\left[a_{1}, \cdots, a_{n}\right] \\
& \Leftrightarrow\left(\mathfrak{H} \Gamma L_{1}, b_{1}, \cdots, b_{n}\right) \cong\left(\mathfrak{A} \Gamma L_{1}, a_{1}, \cdots, a_{n}\right) \\
& \text { for some } a_{1}, \cdots, a_{n} \text { such that } \mathfrak{A} \vDash \varphi\left[a_{1}, \cdots, a_{n}\right] \\
& \Leftrightarrow \mathfrak{U} \vDash \varphi\left[b_{1}, \cdots, b_{n}\right] .
\end{aligned}
$$

Hence we have proved

$$
\mathfrak{A} \vDash\left(\forall v_{1}\right) \cdots\left(\forall v_{n}\right)\left(\varphi\left(v_{1}, \cdots, v_{n}\right) \leftrightarrow \psi\left(v_{1}, \cdots, v_{n}\right)\right) . \quad \text { Q.E.D. }
$$

Corollary 1 (Countable isomorphism theorem, Scott [4], Chang [1]). Suppose \mathfrak{R}_{1} and \mathfrak{A}_{2} are two countable structures for L. Then we have

$$
\mathfrak{A}_{1} \equiv \mathfrak{A}_{2} \Leftrightarrow \mathfrak{A}_{1} \cong \mathfrak{A}_{2} .
$$

Proof. Let L_{1} and L_{2} be two countable sublanguages of L for \mathfrak{N}_{1} and \mathfrak{A}_{2} stated in our theorem respectively. Let $L_{0}=L_{1} \cup L_{2}$ and φ be the Scott's sentence of the structure $\mathfrak{A}_{1}\left\lceil L_{0}\right.$. Then by our main theorem we have

$$
\begin{aligned}
& \mathfrak{U}_{1} \equiv \mathfrak{A}_{2} \Leftrightarrow \mathfrak{A}_{2} \Leftarrow \varphi \text { and } \mathfrak{A}_{1} \equiv \mathfrak{A}_{2} \\
& \Leftrightarrow \mathfrak{A}_{1} \Gamma L_{0} \cong \mathfrak{A}_{2} \Gamma L_{0} \quad \text { and } \quad \mathfrak{A}_{1} \equiv \mathfrak{H}_{2} \\
& \Leftrightarrow \mathfrak{A}_{1} \cong \mathfrak{A}_{2}
\end{aligned}
$$

Q.E.D.

Corollary 2 (Countable definability theorem, Scott [4]). Let \mathfrak{A} be a countable structure for L and $P \subseteq|\mathfrak{Y}|$ a unary predicate on $|\mathfrak{X}|$. Then the following two conditions are equivalent:
(i) For any $Q \subseteq|\mathfrak{H}|,(\mathfrak{H}, P) \cong(\mathfrak{H}, Q)$ implies $P=Q$;
(ii) There is a formula $\varphi(v)$ in L such that

$$
(\mathfrak{A}, P) \vDash(\forall v)(P(v) \leftrightarrow \varphi(v)) .
$$

Proof. Obviously (ii) implies (i). So it is sufficient to prove that (i) implies (ii). Assume (i) and let L_{0} be a countable sublanguage of L for \mathfrak{A} stated in our theorem. Then we have
(iii) $\quad(\mathfrak{H}, P) \cong(\mathfrak{H}, Q) \Leftrightarrow\left(\mathfrak{H} \Gamma L_{0}, P\right) \cong\left(\mathfrak{H} \Gamma L_{0}, Q\right)$
for any $Q \subseteq|\mathfrak{U}|$. Let $\varphi(v)$ be the disjunction of all the formulas $\varphi_{a}(v)$, where $\varphi_{a}(a)$ is the Scott's sentence of the structure ($\left.\mathfrak{H} \Gamma L_{0}, a\right)$ such that $a \in P$. Then we have

$$
\left(\mathfrak{A}\left\lceil L_{0}, P\right) \vDash(\forall v)\left(P(v)_{\leftrightarrow} \leftrightarrow \varphi(v)\right),\right.
$$

by (i) and (iii). Hence we have

$$
(\mathfrak{H}, P) \models(\forall v)(P(v) \leftrightarrow \varphi(v)) .
$$

This means that (i) and (ii) are equivalent.
Q.E.D.

Remark Using our main theorem and Lopez-Escobar's interpolation theorem we can prove Corollary 2 above just as we can prove Beth's definability theorem through Craig's interpolation theorem (cf. Kueker [2]).

References

[1] C. C. Chang: Some remarks on the model theory of infinitary languages, in "Syntax and Semantics of Infinitary Languages" edited by J. Barwise, Lecture Notes in Math. No. 72, Springer-Verlag, pp. 36-63 (1968).
[2] D. W. Kueker: Definability, automorphism, and infinitary languages. ibid., pp. 152-165 (1968).
[3] H. J. Keisler: Model Theory for Infinitary Logic. North-Holland (1971).
[4] D. Scott: Logic with denumerably long formulas and finite strings of quantifiers, in "Theory of Models" edited by J. W. Addison et al., NorthHolland, pp. 329-341 (1965).
[5] E. G. K. Lopez-Escobar: An interpolation theorem for denumerably long sentences. Fund. Math., 57, 253-272 (1965).

