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In model theory of infinitary languages with countable conjunc-
tions and finite strings o quantifiers in the sense o H. J. Keisler’s
book [3], we have some theorems which hold even in the case that there
are uncountably many non-logical symbols, e.g. countable isomorphism
theorem and countable definability theorem (c. Scott [4], Chang [1]
and Kueker [2]). O course we have theorems which hold only in the
case that there are at most countably many non-logical symbols, e.g.
the existence theorem o Scott’s sentence (c. [3]).

In order to make clear the distinction between two kinds o
theorems above mentioned we shall show that or each countable
structure ?/, which is associated to an uncountable infinitary language
L, there is a countable sublanguage L0 o L such that every ormula in
L is definable in by a ormula in L0. We use the standard model
theoretic terminology (c. [2] and [3]). Let L be a first order language
with countable conjunctions and finite strings o quantifiers and pos-
sibly uncountably many non-logical symbols. Then we have the ol-
lowing

Theorem. Let 1 be a countable structure for L. Then there is a
countable sublanguage Lo of L such that for each formula ?(v, v, ., v)
in L there is a formula (vx, v, ., Vn) in Lo such that

(vv)(vv)... (vv)((v, v, ..., v)(v, v, ..., v)).
Proof. For each sequence a=(L’, a, ., a}, where L’ a count-

able sublanguage of L and a, ..., a are elements of I1, let be the
Scott’s sentence o the structure ( [ L’, al,-.., a) which is obtained
rom ?/ L’, the reduct o to L’, by adding a,..., a as new individ-
uals. Then there is a ormula (v, ...,v) in L’ such that =(a,. ., an), i.e. the sentence is obtained 2rom the ormula (v, ., v)
by replacing vl, ., Vn by al, ., an respectively. (We identiy the
elements a in I1 and the constant symbols a corresponding to them.)
Then or each b, ..., b in I1, we have
( 1 ) [bl, ..., bn](::( L’, al, ..., an)’( L’, 51, ..., b).
Hence if a =(L, a, ., a}, a=(L, a, ., a} and L L, then we
have
( 2 ) ?I (Vl)... (Vn)(9,.(Vl, ..., Vn)--->9al(Vl, ..., "t)n)).
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It follows .that for each a, ., a in I1 there is a countable sublanguage

L1 of L such that
( 3 ) (vl)... (Vn)(l(v,..., vn)-2(v,...
holds or every a.=(L., a, ..., an such that LL, where
a=(L,a,.. ",an}, by (2) and the act that Il is countable. SinCe
there are only countably many finite sequences o elements in I], there
is a countable sublanguage L0 of L such that
( 4 ) (Vv)... (Vv)((v, ..., v)(v, ..., v)
holds or every a, ...,an in Il] and or every a=(Lo, a, ...,an} and
a (L, al, ., an}, where L0L. We want to show that this language
L0 satisfies the conclusion o this theorem. Let (v,...,v) be a
formula in L and (v,..., v) be the disjunction o all the ormulas
(v,. ., Vn) such that a has the orm (L0, a,. ., a} or some a,. ., an
such that [al,...,an]. Clearly (v,...,v) is a ormula in L0.
Let L1 be a countable sublanguage of L such that LoL and
(Vl, ...,v) eL. Let b, ...,bn be elements o I1. Then by the
definition o (v,..., v), (1) and (4) we have
l [b, ., bn]==} [b, ..., bn] or some

a= (Lo, a, ..., an} such that .[a, ., an]
@[b, ., bn] or some
a=(L, a, ., an} such that [a, ., an]
(==}( [- L1, 51, "",

for some a,...,a such that l[a,...,an]
?A[b,...,b].

Hence we have proved
(VVl)’’’ (yVn)(/9(Vl, ..., Vn)-r(Vl, ..., Vn)). Q.E.D.

Corollary 1 (Countable isomorphism theorem, Scott [4], Chang [1]).
Suppose and . are two countable structures for L. Then we have

Proof. Let L and L2 be two countable sublanguages of L or
and stated in our theorem respectively. Let Lo=L [J L and be
the Scott’s sentence of the structure V L0. Then by our main theorem
we have

@1 V L0-- [- L0 and _--.
1112 Q.E.D.

Corollary 2 (Countable definability theorem, Scott [4]). Let I be
a countable structure for L and PII a unary predicate on I1. Then
the following two conditions are equivalent"

(i) For any QII, (I,P)-(I, Q) implies P--Q;
(ii) There is a formula (v) in L such that

(, P) (v)(P(v)-.(v)).



718 N. IIOTOHASHI [Vol. 48,

Proof. Obviously (ii) implies (i). So it is sufficient to prove that
(i) implies (ii). Assume (i) and let Lo be a countable sublanguage of L
for stated in our theorem. Then we have

(iii) (?/, P)- (/, Q)(?I L0, P)(?/ L0, Q)
for any Q_I?/I. Let 9(v) be the disjunction of all the formulas (v),
where (a) is the Scott’s sentence of the structure ( [- L0, a) such that
aeP. Then we have

(7I Lo, P) (v)(P(v)9(v)),
by (i) and (iii). Hence we have

(?, P) (v)(P(v)e-9(v)).
This means hat (i) and (ii) are equivalent. Q.E.D.

Remark Using our main theorem and Lopez-Escobar’s interpola-
tion theorem we can prove Corollary 2 above just as we can prove
Beth’s definability theorem through Craig’s interpolation theorem (cf.
Kueker [2]).
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