No. 1]

7. On Measurable Functions. I

By Masahiro TAKAHASHI

Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1973)

1. Introduction. An integral structure Γ was defined and an integral σ with respect to Γ was discussed in the author [3]. Let $\Lambda = (M, G, K, J)$ be an integral system and S a measurable ring of Λ . Then the fundamental integral structure $\Gamma = (\Lambda; S, \mathcal{G}, Q)$ is determined by Λ and S. Theorem 1 in [3] states that there exists a unique integral with respect to Γ provided that J is Hausdorff and complete. The set \mathcal{G} of all integrands is the integral closure of K in the total functional group \mathcal{F} of Λ with respect to the abstract integral structure (S, \mathcal{F}, J) .

In this part of the paper, we shall define the measurability of a function $f \in \mathcal{F}$ and state some properties of measurable functions. Some relations between the set \mathcal{H} of all measurable functions and the set \mathcal{G} of all integrands will be discussed in Part II.

2. Measurable functions. Assumption 2.1. M is a set and S is a ring of subsets of M.

A map f of M into a topological space K is measurable if $f^{-1}(O)$ $\cap X \in S$ for any open set O in K and for any $X \in S$.

Proposition 2.1. Let N be a set and A a set of subsets of N. Let f be a map of M into N such that $f^{-1}(Y) \cap X \in S$ for any $Y \in A$ and $X \in S$. Then we have

1) $f^{-1}(Y) \cap X \in S$ for any element Y of the ring generated by \mathcal{A} and for any $X \in S$.

2) Assume that S is a pseudo- σ -ring. Then $f^{-1}(Y) \cap X \in S$ for any element Y of the σ -ring generated by A and for any $X \in S$.

Proof. Putting $\mathcal{T} = \{Y | Y \subset N, f^{-1}(Y) \cap X \in \mathcal{S} \text{ for any } X \in \mathcal{S}\}$, we have $\mathcal{A} \subset \mathcal{T}$. For $Y, Z \in \mathcal{T}$ and for any $X \in \mathcal{S}$, it holds that $f^{-1}(Y-Z) \cap X = (f^{-1}(Y) - f^{-1}(Z)) \cap X = (f^{-1}(Y) \cap X) - (f^{-1}(Z) \cap X) \in \mathcal{S}$ and hence $Y - Z \in \mathcal{T}$. Analogously, $Y \cup Z \in \mathcal{T}$ for any $Y, Z \in \mathcal{T}$. Since $\phi \in \mathcal{T}$, it follows that \mathcal{T} is a ring containing \mathcal{A} . Hence \mathcal{T} contains the ring generated by \mathcal{A} and thus 1) is proved. If \mathcal{S} is a pseudo- σ -ring, we have $\bigcup_{i=1}^{\infty} Y_i \in \mathcal{T}$, for $Y_i \in \mathcal{T}, i=1, 2, \cdots$, and this implies that \mathcal{T} is a σ -ring containing \mathcal{A} . Thus 2) is proved.

Corollary 1. Let K be a topological space and suppose that a map f of M into K is measurable. Let \mathcal{I}_0 and \mathcal{I}_1 be the ring and the σ -ring, respectively, generated by the set of all open sets in K. Then we have

1) $f^{-1}(Y) \cap X \in S$ for any $Y \in \mathcal{T}_0$ and $X \in S$.

2) If S is a pseudo- σ -ring, $f^{-1}(Y) \cap X \in S$ for any $Y \in \mathcal{I}_1$ and $X \in S$.

Corollary 2. Let K be a topological space and f a measurable map of M into K. Let K' be a topological space and g a map of K into K'. Then a sufficient condition for the composite map $g \circ f$ to be measurable is that one of the following conditions is satisfied:

1) For any open set O in K', $g^{-1}(O)$ is an element of the ring generated by the set of all open sets in K.

2) S is a pseudo- σ -ring. For any open set O in K', $g^{-1}(O)$ is an element of the σ -ring generated by the set of all open sets in K.

3) g is continuous.

Proof. Let us prove that 1) and 2) are sufficient. Let O be an open set in K' and X an element of S. Then it suffices to show that $(g \circ f)^{-1}(O) \cap X \in S$. This follows from Corollary 1 and the fact that $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$. The sufficiency of 3) follows immediately from that of 1).

To prove Theorem 2.1 below, we shall use the following topological lemma.

Lemma 2.1. Let D be a completely separable topological space. Then any open base \mathcal{O} of D contains a countable open base of D.

Proof. Let $\mathcal{O}' = \{O_i | i=1, 2, \cdots\}$ be a countable open base of D. Put $L = \{(l, m) | O_l \subset O \subset O_m \text{ for some } O \in \mathcal{O}\}$ and let O_{lm} be a fixed element of \mathcal{O} such that $O_l \subset O_{lm} \subset O_m$ for each $(l, m) \in L$. Then $\mathcal{O}'' = \{O_{lm} | (l, m) \in L\}$ is a countable open base of D contained in \mathcal{O} . In fact, for any open set Q and for any $p \in Q$, we have an element O_m of \mathcal{O}' such that $p \in O_m \subset Q$. Further we have an element O of \mathcal{O} such that $p \in O_{\mathbb{C}}O_m$. For an element O_l of \mathcal{O}' such that $p \in O_l \subset O$, we have $(l, m) \in L$ and $p \in O_{lm} \subset Q$.

Assumption 2.2. S is a pseudo- σ -ring.

Theorem 2.1. Let K_i be a topological space and f_i a measurable map of M into K_i for each $i \in I$, where I is a finite set $\{1, 2, \dots, n\}$ or a countable set $\{1, 2, \dots, n, \dots\}$. Let $K = \prod_{i \in I} K_i$ be the product space of K_i , $i \in I$, with the strong (or weak) topology. Let us define a map fof M into K by $f(x) = (f_1(x), f_2(x), \dots)$ for each $x \in M$. Then a sufficient condition for f to be measurable is that for each $X \in S$ the subspace f(X) of K is completely separable.

Proof. Let O be an open set in K and X an element of S. Then it suffices to show that $f^{-1}(O) \cap X \in S$. Put D = f(X). Since $\{D \cap \prod_{i \in I} O^i | O^i \text{ is an open set in } K_i \text{ (and, if } K \text{ has the weak topology,} O^i = K_i \text{ except finite } i's)\}$ forms an open base of D and since D is completely separable, Lemma 2.1 implies that D has an open base of the form $\{D \cap O_j | j = 1, 2, \cdots\}$, where $O_j = \prod_{i \in I} O_j^i \text{ with } O_j^i \text{ an open set in } K_i$ for each i and j. The measurability of f_i implies $f_i^{-1}(O_i^i) \cap X \in S$. Since S is a pseudo- σ -ring, we have $Y_j = (\bigcap_{i \in I} f_i^{-1}(O_j^i)) \cap X = \bigcap_{i \in I} (f_i^{-1}(O_j^i)) \cap X) \in S$ for each j. Put $L = \{l \mid D \cap O_l \subset O\}$ and $Y = \bigcup_{l \in L} Y_l$. Then $Y_l \subset X$ implies $Y \in S$. Hence it suffices to verify that $f^{-1}(O) \cap X = Y$. Suppose that $y \in Y$. Then we have $y \in Y_l = (\bigcap_{i \in I} f_i^{-1}(O_l^i)) \cap X$ for some $l \in L$. This implies that $y \in X$ and $f_i(y) \in O_l^i$ for each $i \in I$ and hence $f(y) = (f_1(y), f_2(y), \cdots) \in D \cap O_l \subset O$. Thus it follows that $y \in f^{-1}(O) \cap X$. Conversely suppose that $y \in f^{-1}(O) \cap X$. Since $f(y) \in D \cap O$ and O is open, we have j such that $f(y) \in D \cap O_j \subset O$. Then it holds that $j \in L$ and $(f_1(y), f_2(y), \cdots) = f(y) \in O_j = \prod_{i \in I} O_j^i$. This implies that $y \in \bigcap_{i \in I} f_i^{-1}(O_i^i)$ and hence $y \in X$ implies that $y \in Y_j$. Since $j \in L$ we have $y \in \bigcup_{l \in L} Y_l = Y$. This completes the proof.

Corollary 1. Let K_i be a topological space and f_i a measurable map of M into K_i for each i=1,2,...,n. Let D be a completely separable subspace of $\prod_{i=1}^{n} K_i$ and φ a continuous map of D into a topological space K. Suppose that $(f_1(x), ..., f_n(x)) \in D$ for each $x \in M$ and define a map f of M into K by $f(x) = \varphi(f_1(x), ..., f_n(x))$ for each $x \in M$. Then the map f is measurable.

Proof. Define a map g of M into D by $g(x) = (f_1(x), \dots, f_n(x))$ for each $x \in M$. Then Theorem 2.1 implies that g is measurable. Since $f = \varphi \circ g$, this corollary follows from Corollary 2 to Proposition 2.1.

Corollary 2. Let K be a topological additive group and assume that K is completely separable. Then the set of all measurable maps of M into K is a subgroup of the additive group of all maps of M into K.

Proof. Define a map φ of $D=K\times K$ into K by $\varphi(u,v)=u-v$. Then φ is continuous. Since K is completely separable, so is $D=K\times K$. Now let f and g be measurable maps of M into K. Then the map f-g is the map h defined by $h(x)=\varphi(f(x),g(x))$ for each $x\in M$. Thus the measurability of h=f-g follows from Corollary 1. Hence our corollary is proved.

The following topological lemma will be used to prove Theorem 2.2 below.

Lemma 2.2. Let f and f_i , $i=1, 2, \cdots$, be maps of M into a topological space K and suppose that f_i converges pointwise to f. Then, for any subset E of K and for $S(E) = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} f_i^{-1}(E)$, it holds that $f^{-1}(\mathring{E}) \subset S(E) \subset f^{-1}(\overline{E})$.¹⁾

Proof. For $x \in f^{-1}(E)$, we have $f(x) \in E$ and hence there exists an *n* such that $f_i(x) \in E \subset E$ for any $i \ge n$. This implies $x \in S(E)$. Now suppose that $y \in S(E)$. Then it suffices to show that $V \cap E \neq \phi$ for any neighbourhood *V* of f(y). Since $f_i(y)$ converges to f(y), we have an n_1 such that $f_i(y) \in V$ for any $i \ge n_1$. Further $y \in S(E)$ implies the existence of an n_2 such that $f_i(y) \in E$ for any $i \ge n_2$. For $n = \max(n_1, n_2)$ it

¹⁾ E and \overline{E} mean the interior and the closure, respectively, of E in K.

follows that $f_n(y) \in V \cap E$ and thus the lemma is proved.

Theorem 2.2. Let K be a uniform space and suppose that K has a countable base for uniformity.¹⁾ Let $f_i, i=1, 2, \cdots$, be measurable maps of M into K and suppose that f_i converges pointwise to a map f of M into K. Then f is measurable.

Proof. Let O be an open set in K and X an element of S. Then it suffices to prove that $f^{-1}(O) \cap X \in S$. Let $\{U_k | k=1, 2, \dots\}$ be a countable base for uniformity of K. We may assume that $U_{k+1}^3 \subset U_k$ $=U_k^{-1}$ for each k. Putting $O_k = (\bigcup_{t \in O^c} U_k(t))^c$ we have open sets $O_k, k=1, 2, \cdots$, in K. Let us prove 1) $\overline{O}_k \subset O_{k+1}$ for each k and 2) $O = \bigcup_{k=1}^{\infty} O_k$. 1) is proved as follows. For any $x \in \overline{O}_k$ there exists $y \in U_{k+1}(x) \cap O_k$. Suppose that $x \notin O_{k+1}$. Since $x \in O_{k+1}^c = \overline{\bigcup_{t \in O^c} U_{k+1}(t)}$ we have $t_0 \in O^c$ and $z \in U_{k+1}(x) \cap U_{k+1}(t_0)$. Hence $y \in U_{k+1}(x) \subset U_{k+1}^2(z)$ $\subset U_{k+1}^{\mathfrak{z}}(t_0) \subset U_k(t_0) \subset \bigcup_{t \in \mathcal{O}^c} U_k(t) \subset O_k^c$ and this is a contradiction. Thus we have $x \in O_{k+1}$ for any $x \in \overline{O}_k$. Let us prove 2). $O_k^c \supset \bigcup_{t \in O^c} U_k(t) \supset O^c$ implies that $O_k \subset O$ for each k. Let us show that $x \in \bigcup_{k=1}^{\infty} O_k$ for any $x \in O$. There exists k such that $U_k(x) \subset O$ and it suffices to show that $x \in O_{k+1}$. Otherwise we have $x \in \bigcup_{t \in O^c} U_{k+1}(t)$ and hence there exist $t_1 \in O^c$ and $y \in U_{k+1}(x) \cap U_{k+1}(t_1)$. This implies $t_1 \in U_{k+1}(y) \subset U_{k+1}^2(x)$ $\subset U_k(x) \subset O$, which is a contradiction. Thus 1) and 2) are proved. Now put $S_k = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} f_i^{-1}(O_k)$ for each k. Then Lemma 2.2 implies that $f^{-1}(O_k) \subset S_k \subset f^{-1}(\overline{O}_k)$ for any k. Thus it follows that $f^{-1}(O)$ $=f^{-1}(\bigcup_{k=1}^{\infty}O_k)=\bigcup_{k=1}^{\infty}f^{-1}(O_k)\subset\bigcup_{k=1}^{\infty}S_k\subset\bigcup_{k=1}^{\infty}f^{-1}(\overline{O}_k)=f^{-1}(\bigcup_{k=1}^{\infty}\overline{O}_k)$ $=f^{-1}(\bigcup_{k=1}^{\infty} O_k)=f^{-1}(O).$ Hence we have $f^{-1}(O)\cap X=(\bigcup_{k=1}^{\infty} S_k)\cap X$ $= \bigcup_{k=1}^{\infty} (S_k \cap X). \quad \text{Since} \quad S_k \cap X = (\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} f_i^{-1}(O_k)) \cap X = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty}$ $(f_i^{-1}(O_k) \cap X)$, since the measurability of f_i implies $f_i^{-1}(O_k) \cap X \in S$, and since S is a pseudo- σ -ring, we have $f^{-1}(O) \cap X = \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} (f_i^{-1}(O_k))$ $\cap X \in \mathcal{S}$. Thus the theorem is proved.

References

- M. Takahashi: Integration with respect to the generalized measure. I, II. Proc. Japan Acad., 43, 178-185 (1967).
- [2] ——: Integration with respect to the generalized measure. III. Proc. Japan Acad., 44, 452–456 (1968).
- [3] ——: Integration with respect to the generalized measure. IV. Proc. Japan Acad., 44, 457–461 (1968).

¹⁾ A base for uniformity is a non-empty set \mathcal{U} of subsets of $K \times K$ subject to the condition: for each $U, V \in \mathcal{U}$ there exists $W \in \mathcal{U}$ such that $\Delta \subset W^2 \subset U \cap V^{-1}$. Here $\Delta = \{(x,x) | x \in K\}, T^n = \{(x_0, x_n) | (x_{i-1}, x_i) \in T, i=1, 2, \dots, n\}$ for $T \subset K \times K$ and for a positive integer n, and $T^{-1} = \{(y, x) | (x, y) \in T\}$ for $T \subset K \times K$. For each $x \in K$, the set $\{t | (t, x) \in U\}$ is denoted by U(x) for $U \subset K \times K$ and the set $\{U(x) | U \in \mathcal{U}\}$ forms a base of the system of neighbourhoods of x in the (underlying) topological space K.