6. A Remark on Fluid Flows through Porous Media

By Yoshio Konishi

Department of Mathematics, University of Tokyo (Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1973)

1. Introduction. According to Muskat [10], the mathematical model for flow through a homogeneous porous medium is the following degenerate quasilinear parabolic equation

$$\frac{\partial u}{\partial t} = \Delta u^m,$$

where u is the density distribution, Δ is the Laplace-Beltrami operator in the space variable x and m is a real constant >1. Physically m-1 is the ratio of specific heats c_p/c_v . Equations of this type are of great importance in technology (see Ames [1], 1.2); besides they have some properties which seem interesting from a purely mathematical point of view. See Oleinik $et\ al.$ [11], § 4; the author would refer the reader to the recent elaborate studies by Aronson [2]-[4]. (Of course the equation (*) has been studied by many other authors from various interesting aspects.)

To avoid unnecessary technical difficulties we concentrate our attention to flows through a medium which occupies all of the circle S^1 . We consider the following Cauchy problem

$$\left\{egin{array}{l} rac{\partial u}{\partial t}\!=\!rac{\partial^2}{\partial x^2}\!u^m & ext{in } S^1\! imes\!(0,T), \ u|_{t=0}\!=\!a(x) & x\in S^1, \end{array}
ight.$$

where a is a given non-negative function on S^1 called a initial datum and $0 < T < \infty$. If $a \in C(S^1)^+$ and $da^m/dx \in L^\infty(S^1)$, then the Cauchy problem (1) has a unique "weak solution" u such that $u \in C(S^1 \times [0, T])^+$ and $\partial u^m/\partial x \in L^\infty(S^1 \times (0, T))$ (cf. Oleinik et al. [11]). Here and throughout the paper we use the usual vector lattice notation, i.e., $C(S^1)^+$ is the cone of all non-negative elements of $C(S^1)$ etc. da^m/dx and $\partial u^m/\partial x$ are distribution derivatives of $a^m \in \mathcal{D}'(S^1)$ and $a^m \in \mathcal{D}'(S^1 \times (0, T))$ respectively.

The purpose of the present paper is to show the *continuous depend*ence of weak solutions on the initial data in the sense of $L^1(S^1)$. Our result reads:

Theorem. Suppose that

$$a,\hat{a}\in C(S^{\scriptscriptstyle 1})^{\scriptscriptstyle +} \quad and \quad rac{d}{dx}a^m,rac{d}{dx}\hat{a}^m\in L^\infty(S^{\scriptscriptstyle 1}).$$

Let u and \hat{u} be the corresponding unique weak solutions of (1) such that

$$u,\hat{u}\in C(S^1 imes [0,T])^+ \quad and \quad rac{\partial}{\partial x}u^m, rac{\partial}{\partial x}\hat{u}^m\in L^\infty(S^1 imes (0,T)).$$

Then we have

(2)
$$||u(t) - \hat{u}(t)||_{L^{1}(S^{1})} \leq ||a - \hat{a}||_{L^{1}(S^{1})}$$
 for $0 \leq t \leq T$. Moreover

(3)
$$||(u(t)-\hat{u}(t))^+||_{L^1(S^1)} \leq ||(a-\hat{a})^+||_{L^1(S^1)} \quad \text{for } 0 \leq t \leq T.$$

The proof relies upon the recent theory of nonlinear semi-groups in general Banach spaces (see Crandall and Liggett [6]). The properties (2) and (3) have been already pointed out in Konishi [8] in a somewhat indirect form. See also Crandall [5] (Theorem 4.12), Konishi [7] (Theorem C), Konishi [9] (Lemma 1), Sato [12] (5.2), Vol'pert and Hudjaev [13] (Theorem 2.2). The following property becomes also clear by the proof of our Theorem: Under the assumption of the Theorem, one has

$$||u(t)||_{L^{p}(S^{1})} \leq ||a||_{L^{p}(S^{1})} \quad for \ 0 \leq t \leq T$$

whenever $1 \le p \le \infty$ (cf. Theorem 4 of Konishi [8]).

2. Proof of the theorem. Let us write down the basic result obtained in the appendix II of Konishi [8]. We define a nonlinear operator A in the dual space $C(S^1)^*$ of $C(S^1)$:

$$D(A) = \{ f \in C(S^1) ; df | f|^{m-1}/dx \in L^{\infty}(S^1) \text{ and } d^2f | f|^{m-1}/dx^2 \in C(S^1)^* \},$$

 $Af = d^2f | f|^{m-1}/dx^2 \text{ for } f \in D(A).$

Note that the space $C(S^1)^*$ is the Banach space of bounded Baire measures on S^1 with the norm of total variation (Riesz-Markov-Kakutani theorem) and it contains $L^1(S^1)$ as a closed subspace. We know that the operator A is dissipative in $C(S^1)^*$, i.e.,

$$||f-g-\lambda(Af-Ag)||_{C(S^1)^*} \ge ||f-g||_{C(S^1)^*}$$

whenever $\lambda > 0$ for $f, g \in D(A)$ and it satisfies

$$R(I-\lambda A)\supset D(A)$$
 for $\lambda>0$.

Hence A generates a nonlinear contraction semi-group $\{e^{tA}\}_{t\geq 0}$ on $\overline{D(A)}$ = $L^1(S^1) \subset C(S^1)^*$ in the sense of Theorem I of Crandall and Liggett [6]:

Moreover $\{e^{tA}\}_{t>0}$ is an order-preserving semi-group:

$$\|(e^{tA}f-e^{tA}g)^+\|_{L^1(S^1)} \leqslant \|(f-g)^+\|_{L^1(S^1)}, \quad f,g \in L^1(S^1), \quad t \geqslant 0.$$

As for the differentiability of $\{e^{tA}\}_{t>0}$, we have the following: If $a \in D(A)$, then $u(t) = e^{tA}a \in D(A)$ for each $t \ge 0$, u(t) is weakly* continu-

ously differentiable in $C(S^1)^*$ in $t \ge 0$ and

$$\mathbf{w}^* - \frac{d}{dt}u(t) = Au(t)$$
 in $C(S^1)^*$ for $t \ge 0$.

More precisely, for a non-negative $a \in D(A)$, we obtain the following Proposition (Konishi [8]). Assume that

$$a\in C(S^{\scriptscriptstyle 1})^+$$
, $\dfrac{d}{dx}a^m\in L^\infty(S^{\scriptscriptstyle 1})$ and $\dfrac{d^2}{dx^2}a^m\in C(S^{\scriptscriptstyle 1})^*$.

Then there exists a unique solution u of the problem (1) such that

$$u \in C(S^1 \times [0, T])^+,$$

$$\frac{\partial}{\partial x} u^m \in L^{\infty}(S^1 \times (0, T)),$$

$$\frac{\partial x}{\partial x^2}u(t)^m \in C(S^1)^* \quad for \ 0 \leqslant t \leqslant T.$$

Moreover

$$\left\|\frac{\partial^2}{\partial x^2}u(t)^m\right\|_{C(S^1)^*}\leqslant \left\|\frac{d^2}{dx^2}a^m\right\|_{C(S^1)^*},\quad 0\leqslant t\leqslant T,$$

and

$$||u(t)||_{L^{p}(S^{1})} \leq ||a||_{L^{p}(S^{1})} \quad (1 \leq p \leq \infty), \quad 0 \leq t \leq T.$$

This solution u is expressed by

$$u(t) = e^{tA}a$$
, $0 \le t \le T$.

Our proof of the theorem is completed if we examine the following Lemma. Under the assumption of the theorem we have the expression:

$$u(t) = e^{tA}a$$
 and $\hat{u}(t) = e^{tA}\hat{a}$ for $0 \le t \le T$.

Proof. Let $\{a_n\}_{n\geqslant 1}\subset \mathcal{D}(S^1)$ be a monotone non-increasing sequence of strictly positive functions on S^1 such that

$$\sup_{n\geqslant 1}\left\|\frac{d}{dx}a_n^m\right\|_{L^\infty(S^1)}<\infty$$

and that

$$\lim_{n\to\infty} a_n(x) = a(x) \quad \text{at each} \quad x \in S^1.$$

We denote by u_n $(n \ge 1)$ the classical solutions of (1) with the initial data a_n ; note that such u_n 's surely exist. We can write that

$$u_n(t) = e^{tA}a_n$$
, $n \geqslant 1$, $0 \leqslant t \leqslant T$.

We obtain

$$0 \leqslant \cdots \leqslant u_n(t) \leqslant \cdots \leqslant u_2(t) \leqslant u_1(t)$$
 in S^1 , $0 \leqslant t \leqslant T$,

and the weak solution u can be obtained through

$$u(x,t) = \lim_{n \to \infty} u_n(x,t) \quad (x,t) \in S^1 \times [0,T]$$

(cf. Oleinik et al. [11]). Hence

$$u(t) = \text{s-}\lim_{n \to \infty} e^{tA} a_n$$
 in $L^1(S^1)$ for $0 \le t \le T$.

On the other hand,

$$a = s - \lim_{n \to \infty} a_n$$
 in $L^1(S^1)$.

Accordingly

$$u(t) = e^{tA}a$$
, $0 \leqslant t \leqslant T$.

Similarly

$$\hat{u}(t) = e^{tA}\hat{a}, \quad 0 \leqslant t \leqslant T.$$
 Q.E.D.

Remark. Set

$$\mathcal{M} = \left\{ f \in C(S^1)^+ ; \frac{d}{dx} f^m \in L^\infty(S^1) \right\}.$$

Then

$$L^{1}(S^{1})^{+} \cap D(A) \subset \mathcal{M} \subset L^{p}(S^{1})^{+} \qquad (1 \leqslant p \leqslant \infty)$$

and

$$e^{tA}(L^1(S^1)^+ \cap D(A)) \subset L^1(S^1)^+ \cap D(A),$$

 $e^{tA}\mathcal{M} \subset \mathcal{M},$
 $e^{tA}L^p(S^1)^+ \subset L^p(S^1)^+$ $(1 \leqslant p \leqslant \infty)$

for each $t \ge 0$. Thus we are now able to grasp the weak solutions of (1) (in the sense of Oleinik *et al.* [11]) within the scope of the theory established by Crandall and Liggett [6]. We hope that this result may stimulate us to further operator theoretical studies of the equation (*). Our approach may be generalized to several directions. The details will be studied elsewhere.

References

- [1] W. F. Ames: Nonlinear Partial Differential Equations in Engineering.
 Academic Press, New York London (1965).
- [2] D. G. Aronson: Regularity properties of flows through porous media. SIAM J. Appl. Math., 17, 461-467 (1969).
- [3] —: Regularity properties of flows through porous media. A counter-example. SIAM J. Appl. Math., 19, 299-307 (1970).
- [4] —: Regularity properties of flows through porous media. The interface. Arch. Rational Mech. Anal., 37, 1-10 (1970).
- [5] M. G. Crandall: Semigroups of nonlinear transformations in Banach spaces. Contributions to Nonlinear Functional Analysis. Academic Press, New York - London, 157-179 (1971).
- [6] M. G. Crandall and T. M. Liggett: Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 265-298 (1971).
- Y. Konishi: Some examples of nonlinear semi-groups in Banach lattices.
 J. Fac. Sci. Univ. Tokyo Sect. IA, 18, 537-543 (1972).
- [8] —: Une méthode de résolution d'une équation d'évolution non linéaire dégénérée. J. Fac. Sci. Univ. Tokyo Sect. IA, 19, 243-255 (1972).
- [9] —: On the nonlinear semi-groups associated with $u_t = \Delta \beta(u)$ and $\varphi(u_t) = \Delta u$ (to appear in J. Math. Soc. Japan).
- [10] M. Muskat: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937).
- [11] O. A. Oleinik, A. S. Kalashnikov, and Chzou Yui-Lin': The Cauchy problem and boundary value problems for equations of the type of nonstationary filtration. Izv. Akad. Nauk SSSR Ser. Mat., 22, 667-704 (1958).

- [12] K. Sato: A note on nonlinear dispersive operators. J. Fac. Sci. Univ. Tokyo Sect. IA, 18, 465-473 (1972).
- [13] A. I. Vol'pert and S. I. Hudjaev: Cauchy's problem for degenerate second order quasilinear parabolic equations. Mat. Sbornik, 78, 374-396 (1969).