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6. A Remark on Fluid Flows through Porous Media

By Yoshio KONISHI
Department of Mathematics, University of Tokyo

(Comm. by Ko6saku YO0SIDA, M. J. A., Jan. 12, 1973)

1. Introduction. According to Muskat [10], the mathematical
model for flow through a homogeneous porous medium is the following
degenerate quasilinear parabolic equation

ou n
(%) %_Au ,
where u is the density distribution, 4 is the Laplace-Beltrami operator
in the space variable « and m is a real constant >1. Physically m—1
is the ratio of specific heats ¢,/c,. Equations of this type are of great
importance in technology (see Ames [1], 1.2); besides they have some
properties which seem interesting from a purely mathematical point
of view. See Oleinik et al. [11], § 4; the author would refer the reader
to the recent elaborate studies by Aronson [2]-[4]. (Of course the
equation (x) has been studied by many other authors from various
interesting aspects.)

To avoid unnecessary technical difficulties we concentrate our at-
tention to flows through a medium which occupies all of the circle S'.
We consider the following Cauchy problem

ou _ 9 . . "
(1) R—_Wu in §*x(0,T),

Ul;_o=0(x) ze S,
where o is a given non-negative function on S' called a initial datum
and 0<T<oco. If aeC(SY* and de™/dx e L=(S"), then the Cauchy
problem (1) has a unique “weak solution” » such that u € C(S* x[0, TD*
and ou™ [ox € L>(S' X (0, T)) (cf. Oleinik et al. [11]). Here and through-
out the paper we use the usual vector lattice notation, i.e., C(S)* is the
cone of all non-negative elements of C(S") ete. da™/dx and ou™/ox are
distribution derivatives of a™ ¢ 9/(S") and u™ e 9/(S'x(0,T)) respec-
tively.

The purpose of the present paper is to show the continuous depend-
ence of weak solutions on the initial date in the sense of L'(SY). Our
result reads:

Theorem. Suppose that

a,deCESY* and Lam, g e LS.
dx dx
Let u and 4 be the corresponding unique weak solutions of (1) such that
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w, i e CS' [0, TD* and 2_um, 9 am e L=(S'x (0, T)).
ox 0x

Then we have

( 2 ) “u(t)_a(t)“Ll(Sl)Q“a'_d“Ll(si) fO’i" 0< < T.
Moreover
(3) [l (@) = AEN* (| zacsn < (@—G)* || zacsny for 0LET.

The proof relies upon the recent theory of nonlinear semi-groups
in general Banach spaces (see Crandall and Liggett [6]). The proper-
ties (2) and (3) have been already pointed out in Konishi [8] in a some-
what indirect form. See also Crandall [5] (Theorem 4.12), Konishi [7]
(Theorem C), Konishi [9] (Lemma 1), Sato [12] (5.2), Vol’pert and
Hudjaev [13] (Theorem 2.2). The following property becomes also
clear by the proof of our Theorem: Under the assumption of the
Theorem, one has

%) |5 cs0 <@ ]]cs1) for 0<I<T
whenever 1<p< co (ef. Theorem 4 of Konishi [8]).

2. Proof of the theorem. Let us write down the basic result
obtained in the appendix II of Konishi [8]. We define a nonlinear
operator A in the dual space C(SY)* of C(SY):

DA)={feClSY;df|f|™*/dxe L°(S") and d*f]f|™!/da?e C(SH*},
Af=adf|f|™/dx? for f e D(A).
Note that the space C(SY)* is the Banach space of bounded Baire meas-
ures on S' with the norm of total variation (Riesz-Markov-Kakutani
theorem) and it contains L(S") as a closed subspace. We know that
the operator A is dissipative in C(SY)*, i.e.,
I f—9—2AS—AD sy =] —9llocsy
whenever 1>>0 for f, g e D(A) and it satisfies
R(I—24)DD(A) for 1>>0.

Hence A generates a nonlinear contraction semi-group {¢‘4},,, on D(4)
=L(S)CC(SH* in the sense of Theorem I of Crandall and Liggett
[6]:

et4: LM(SY)—L'SY), t=0;

¢t4 f =g-lim (I—%A) "roin LNS), feD(A), t>0;

etAesAze(t+s)A, t, 8}0 ;

e4=J;

s;lliom edf=1f in L\(SY), [feL'SY);

“emf_emg”Ll(Su<”f"'g”L1(Sl)’ f’ ge LI(SI), t>0-
Moreover {e'4},,, is an order-preserving semi-group :

(e f —e 4" |pasn <[ (f —D* llzasys  SFr9€LMSYH, t=0.

As for the differentiability of {e‘4},,,, we have the following: If
a € D(A), then u(t)=e'4a ¢ D(A) for each t>0, u(t) is weakly* continu-
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ously differentiable in C(S)* in t>0 and
w*—%u(t):Au(t) in C(SY* for t>0.

More precisely, for a non-negative a € D(A), we obtain the following
Proposition (Konishi [8]). Assume that
aeC®, Lanel (s and L amec@)*,
dx da?
Then there exists a unique solution u of the problem (1) such that
ue C(S*x[0, TDH+,
9 ym e Lo(S'X (0, TY),
ox
aa—;u(t)m e C(SH*  for 0<t<T.

Moreover
d? amn

< ”— 0<t<T,
C(S1y* da?

[

C(Sl)*,
and
N zosn < @llzosy (A<P<L o), O0LEKT.
This solution u is expressed by
u(t) =et“a, 0<ILT.

Our proof of the theorem is completed if we examine the following

Lemma. Under the assumption of the theorem we have the ex-
Ppression :

u(t)=et4a and A{)=e4d for 0OLELT.

Proof. Let {a,},5:C9D(S") be a monotone non-increasing sequence

of strictly positive functions on S* such that

sup
n>1

< oo
L (81)

_a%

dx

and that
lima,(x)=a(x) ateach zeS.

700

We denote by u, (n>1) the classical solutions of (1) with the initial
data a,; note that such u,’s surely exist. We can write that
u, () =e4a,, n=1, O0<ILT.
We obtain
0< - <u, W< - - <u,O<u(® in S, 0<ELT,
and the weak solution % can be obtained through
w(x, ) =limu,(x,t) (x,t)eS'x[0,T]

n—00

(cf. Oleinik et al. [11]). Hence
u(t) =s-lim et4a, in LY(SY) for 0<<IiLT.
On the other hand,
a=s-lim a, in LY(SY).

n—oo
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Accordingly
u(t) =ea, o<tLT.
Similarly

w(t) =et4d, 0<tLT. Q.E.D.
Remark. Set

M= {f e C(SH*; %f"‘ e L”(Sl)} .

Then
LY(SH* N D(A)c M LP(SH* AL<p<L o)

and

e'4(LY(SH* N D(A)) C L'(SH* N D(4),

etA ﬂ - ﬂ’

e LP(SHY CLP(SH* (1I<p< o)
for each £>>0. Thus we are now able to grasp the weak solutions of
(1) (in the sense of Oleinik et al. [11]) within the scope of the theory
established by Crandall and Liggett [6]. We hope that this result may
stimulate us to further operator theoretical studies of the equation (x).
Our approach may be generalized to several directions. The details
will be studied elsewhere.
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