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6. A Remark on Fluid Flows through Porous Media

By Yoshio KONISHI
Department of Mathematics, University of Tokyo

(Comm. by KSsaku YOSIDA, M. $. A., Jan. 12, 1973)

1. Introduction. According to Muskat [10], the mathematical
model for flow through a homogeneous porous medium is the following
degenerate quasilinear parabolic equation

( ) u u,
3t

where u is the density distribution, A is the Laplace-Beltrami operator
in the space variable x and m is a real constant )1. Physically m--1
is the ratio of specific heats c/c. Equations o this type are o great
importance in technology (see Ames [1], 1.2); besides they have some
properties which seem interesting from a purely mathematical point
of view. See Oleinik et al. [11], 4;the author would refer the reader
to the recent elaborate studies by Aronson [2]-[4]. (Of course the
equation (,) has been studied by many other authors from various
interesting aspects.)

To avoid unnecessary technical difficulties we concentrate our at-
tention to flows through a medium which occupies all of the circle S.
We consider the ollowing Cauchy problem

3u 3u in S(0, T),
( 1 3t 3x

u I:o a(x) x e S,
where a is a given non-negative function on S called a initial datum
and OTc. If a e C($9 + and da/dx e L(S), then the Cauchy
problem (1) has a unique "weak solution" u such that u e C(S [0, T]) /

and u/3x e L(S (0, T)) (cf. Oleinik et al. [11]). Here and through-
out the paper we use the usual vector lattice notation, i.e., C($9 + is the
cone of all non-negative elements o C(S) etc. da/dx and 3u/3x are
distribution derivatives o ae /(S) and ue /(S(O, T)) respec-
tively.

The purpose of the present paper is to show the continuous depend-
ence of weak solutions on the initial data in the sense of LI(S). Our
result reads:

Theorem. Suppose that

a 4eC(S)+ and d---am d__5
dx ’-dx e L(S).

Let u and t be the corresponding unique weak solutions of (1) such that
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and -u", --t e L(SI (0, T)).u, e C(S [0, T]) /

3x 3x
Then we have
( 2 Ilu(t)--(t)ll()<[la--ll(s) for O<t<T.
Moreover
( 3 ) I](u(t)--(t)) + I(,)ll(a--a)+ ll() fo OtT.

The proof relies upon the recent theory of nonlinear semi-groups
in general Banach spaces (see Crandall and Liggett [6]). The proper-
ties (2) and (3) have been already pointed out in Konishi [8] in a some-
what indirect orm. See also Crandall [5] (Theorem 4.12), Konishi [7]
(Theorem C), Konishi [9] (Lemma 1), Sato [12] (5.2), Vol’pert and
Hudjaev [13] (Theorem 2.2). The following property becomes also
clear by the proo of our Theorem" Under the assumption of the
Theorem, one has

whenever 14p4 (cf. Theorem 4 of Konishi [8]).
2. Proof of the theorem. Let us write down the basic result

obtained in the appendix II of Konishi [8]. We define a nonlinear
operator A in the dual space C(SI)* of C(S)
D(A)--{f e C(S) dflf -/dx L(S) and dfl fl-/dx e C(S)*},
Af-dflfl-/dx for f e D(A).

Note that the space C(S)* is the Banach space of bounded Baire meas-
ures on S with the norm of total variation (Riesz-Markov-Kakutani
theorem) and it contains L(S) as a closed subspace. We know that
the operator A is dissipative in C(S)*, i.e.,

whenever 2> 0 for f, g e D(A) and it satisfies
R(I-- 2A) D(A) for 2> 0.

Hence A generates a nonlinear contraction semi-group {etA}t>o on D(A)
=L(S)C(S)* in the sense of Theorem I of Crandall and Liggett
[6]"

et" L(S1)--LI(S1), t >/0

tA f inI.,(S) feD(A), t> Oef-s-lim_. I--
ee-e(/, t,>O;

s-lira ef f in L(S), f e L(S)

Moreover {etA}tO is an order-preserving semi-group"
II(etf -et’g) + L,(S,)<II(f --g)+IIL,(Sl), f, g e L(S), tO.

As for the differentiability of ett,0, we have the following If
a e D(A), then u(t)- eta e D(A) for each t >/O, u(t) is weakly* continu-
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ously differentiable in C(S)* in t>0 and

w*--tu(t)-Au(t) in C(S)* or t> 0.

More precisely, or a non-negative a D(A), we obtain the following
Proposition (Konishi [8]). Assume that

a e C(S) +, d a e L(S) and da C(S)*
dx dx

Then there exists a unique solution u of the problem (1) such that
u e C(S [0, T])/,

--.u e L(S (0, T)),
3x

u(t) e C(S1)* for OtT.
3x

Moreover

u(t) < a
C S)* - C S)*

and

This solution u is expressed by

O< t< T,

O< t< T.

u(t) e*a, 0< t< T.
Our proof of the theorem is completed if we examine the following

Lemma. Under the assumption of the theorem we have the ex-
pression

u(t)=eta and (t)=et5 for O<t T.
Proof. Let {an}n>(S) be a monotone non-increasing sequence

of strictly positive functions on S such that

n>l -- L(S)

and that
lim a(x)=a(x) at each x e S.

We denote by u (n>/1) the classical solutions o (1) with the initial
data a note that such Un’S surely exist. We can write that

Un(t)=etan, nl, OtT.
We obtain

O< <u (t < <u (t <u (t ins, O< t< T
and the weak solution u can be obtained through

u(x, t)=lim Un(X, t) (x, t) e S [0, T]

(c. Oleinik et al. [11]). Hence
u(t)=s-lim eta in L(S1) for 0<t<T.

On the other hand,
a=s-lim a in L(S).
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Accordingly

Similarly

Remark.

Then

and

(t)’-- etA(, O< $< T.
Set

axd f L(S1)},_/l f e C S + --- e

Q.E.D.

L(S) + VID(A)c,_cLP(S)+ (lp

etA(LI(S) + (’l D(A))cLI(S) / D(A),
e A,_ ,_
et’LP(S1) + cLP(S) / (1p

or each t >/0. Thus we are now able to grasp the weak solutions of
(1) (in the sense of Oleinik et al. [11]) within the scope of the theory
established by Crandall and Liggett [6]. We hope that this result may
stimulate us to further operator theoretical studies o the equation (.).
Our approach may be generalized to several directions. The details
will be studied elsewhere.
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