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Generalized Prime Elements in a Compactly
Generated 1.Semigroup. I

By Kentaro MURATA*) and Derbiau F. Hsu**)

(Comm. by Kenjiro StIODA, M. J. A., Feb. 12, 1973)

In [6] by introducing f-systems authors have defined f-prime ideals
in rings as a generalization of prime ideals [2] and s-prime ideals [8],
and generalized under certain assumptions usual decomposition theo-
rems of ideals and the concept oi relatedness in general rings [2], [3],
[7], [8]. The aim o the present note is to present similar results for
"elements" of an/-semigroup with some restricted compact generator
system. The results obtained here are applicable or general rings
and some kind o algebraic systems.

1. Mapping p, -Prime Elements.
Let L be a cm-lattice [1] with the following four conditions"
(1) L has the greatest element e.
(2) L has the least element 0.
(3) Both ae and ea are less than a, i.e. ae_a and ea_a.
(4) L has a compact generator system [4].
It is then easy to see that aO-Oa--O, ab_a and abe_ b or any a,

b in L. If in particular e is unity quantity, the condition (3) is super-
fluous. From now on 27 will denote a compact generator system ot L,
X(a) the set of the compact elements (elements in X) which are less
than a, and X’(a) the complement o X(a) in 27. Throughout this note
we suppose that

(.) if ue X(aU b), there exists an element x of (a) such that
X(x U b) u, where a, b are in L.

Let R be an associative or nonassociative ring (or more generally
a ringoid [1]), and let L, Xn and X* be the sets of all (two-sided) ide-
als of R, o all principal ideals of R and o all finitely generated ideals
of R, respectively. Then it can be shown that La is a cm-lattice with
(1), (2), (3) and (4). It is easy to see that 27a is a compact generator
system with the condition (,). Similarly fr X*. Let G be an arbitra-
ry group, and let La, va and X* be the sets of all normal subgroups of
G, of all normal subgroups with single generators and o all finitely
generated nrmal subgroups o G, respectively. Then it can be shown
that La is a cm-lattice under inclusion relation and commutater-prod-
uct. It is then easily verified that the conditions (1), (2), (3) and (4)
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hold for L, and both X and X* are compact generator systems satis-
fying the condition (.).

A subset M* of 2: is called a Z-system [4], iff there is an element z
of M* such that z <_ xy or any two elements x and y in M*. An ele-
ment p is prime, iff whenever a product of two elements of L is less
than p, then at least one o the factors is less than p. Then it can be
proved [4] that p is prime if and only if X’(p) is a/-system.

Now we consider a map ’x(x) from 27 into L with the follow-
ing two conditions"

(1) x_p(x) for every element x e ,
(2) u

_
p(x) U a implies p(u)

_
p(x) J a, where x, u e and a e L.

(1.1) Definition. A subset M of is called a p-system, iff M con-
tains a Z-system M*, called the kernel of M, such that X((x)) meets
M* for each element x e M. The void set is a p-system with void
kernel.

(1.2) Definition. An element p of L is said to be p-prime, iff X’(p)
is a -system.

For example, the greatest element e is -prime.
(1.3) Lemma. For any p-prime element p,p(xl)p(x2)_p implies

x <_ p or x <_ p.
Proof. If we suppose that x is not less than p or i=1, 2 we

can take two elements x* and x* in the kernel M* of X’(p)such that
x*<_(x) or i=1, 2. Choose an element x* of M* with x*<_x*x*.
Then we have x* <_(x)(x). Hence (x)(x) is not less than p, which
is a contradiction.

(1.4) Lemma. Let M be a p-system with kernel M*, and let a be
an element of L such that X(a) does not meet M. Then there exists a
maximal element p in the set of the elements b such that b

_
a and X(b)

does not meet M. p is necessarily p-prime.
Proof. It is easy to see that the set of the elements b’s is induc-

tive. Hence the existence of p follows from Zorn’s lemma. To prove
that X’(p) is a -system, we consider the set of the elements t of X such
that X(tUp) meets M*. Firstly we show the containments M*T
27’(p). The containment M*T is trivial. Take any element t o T.
Then we can take an element u* such that u*_< t [J p and u* e M*. If
we suppose that t<_p, then u*<_p. This means that M* meets X(p),
which is a contradiction. Accordingly t is not less than p. Thus we
proved the containment TX’(p). Next we will prove that T is a
system. Take tw arbitrary elements tl, t of T. Then we can find u*
such that u* <_ t 2 p and u* e M* for i= 1, 2. Let u* be an element of
M* with u* <_u*u*. Then we have u* <_ tlt U p. By using the condi-
tion (), we can take an element t such that u*<_ t iJ p, t e X(tt). This
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means that T is a Z-system. Finally we prove that v(p(y)) meets T
or each y e 27’(p). Since 27(y [J p) meets M, there is an element u of_ M
with u<_y[Jp. Then we have u<_p(y)Up, p(u)_p(y)iJp by (2). Now
we can take an element u* o M* such that u* <_?(u). Then u*_<(y)
tip. Since there is an element t o v((y)) such that u*_<tiJp, M*
meets 2:(flip), whence t is an element of T. Thus v(?(y)) meets T.
Therefore we proved that V,(p) is a ?-system with kernel T.

(1.5) Definition. A -radical o an element a o L, denoted by

(a), is the supremum (join) of the element x o 27 which have the
property that every -system containing x meets (a).

By using (1.4) we can prove the ollowing theorem, which is simi-
lar to the proo of Theorem 1 in [4].

(1.6) Theorem. The p-radical of any element a of L is the in-

fimum of all the p-prime elements containing a.

Let a be an element o L such that 27(a) does not meet the -system
M with kernel M*. Then the amily o all -systems which contain
M* and does not meet X(a) is inductive. Hence by Zorn’s lemma there
exists a maximal /-system M* in that amily. We now make M as

the set o the elements x’s o 27’(a) such that 27((x)) meets M*. Then
evidently M orms a -system with kernel M* and does not meet X(a).
By (1.4) there is a -prime element p such that p_a and X(p) does not
meet M. We have proved that 27’(p) is a -system with kernel T con-
sisting o the elements t o 27 such that X(tiJp) meets M*. Since
TM*, we have T--M*. Accordingly, 2’(p) coincides with M1 by the
definition o M. In view o this we make the ollowing"

(1.7) Definition. A p-prime element p is a quasi-minimal
prime element belonging to a, iff p

_
a and there is a kernel M* or the

-system X’(p) such that M* is a maximal p-system which does not
meet r(a).

Let a be any fixed element of L, and let p be a -prime element
such as p >_ a. (The existence of p is assured by e.) Then there exists
a quasi-minimal -prime element p’ belonging to a such that
which is clear by the above consideration. From (1.6) we obtain the
ollowing"

(1.8) Theorem. The p-radical of any element in L is represented
as the infimum of all quasi-minimal p-prime elements belonging to a.

Let A be any two-sided ideal o an associative or nonassociative
ring (or ringoid) R. The -radical o A and the quasi-minimal ?-prime
ideal belonging to A are defined in the obvious way. Similarly or a
normal subgroup N of a group G. Then we have the ollowing state-
ments"

The -radical of any ideal A of R is represented as the intersection
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of all quasi-minimal o-prime ideals belonging to A.
The -radical of any normal subgroup N of G is represented as the

intersection of all quasi-minimal o-prime normal subgroups belonging
to N.

2. o.Related Elements.
In this section we let L be an ssociative era-lattice (i.e. c/-semi-

group [1]) with the conditions (1), (2), (3), (4) and (.). Moreover we
assume that the compact generator system X is closed under multipli-
cation. Then any multiplicatively closed subset of X is a 0-system.

If an associative ring (or ringoid) has unity quantity, both Xz and

X* are multiplicatively closed. If G is a group of nilpotent of class 2,
La is a c/-semigroup with the multiplicatively closed system Xa.

Following [3], [6], [7] and [8], we define "-related to" and "-un-
related to" for elements of L and in particular of X.

(2.1) Definition. An element x of X is said to be (left) -related
to a e L, iff for every x’ of X((x)) there exists an element u of X’(a)
such that x’u is in X(a). An element b of L is said to be (left) -relat-
ed to a, iff every y of X(b) is -related to a. Elements in L (or in
is said to be (left) -unrelated to a, iff they are not -related to a.

We can prove easily the following"

(2.2) Lemma. The set M of all elements which are in
unrelated to a is a -system with a multiplicatively closed kernel.

If the least element 0 is -related to each element a of L, then each
element of L is related to itself, and conversely. For, if we assume
that 0 is -related to a, then for every x e X(a) we have x<_aU(0),
0(x)_< a [2 (0). Hence we get x’_< a U 0(0) for any x’ of X((x)). By the
condition (.) we can choose two elements u e X(a) and z e X((0)) with
x’_<u U z. Since there is an element v of X’(a) with zv<_ a, we btain
x’v_(uUz)v--uvkJzv_avkJa--a. Hence x is -related to a. There-
fore a is -related to a. The converse is trivial.

In the rest of this section we assume, as in the case of [5], that
each element of L is -related to itself. Then we obtain

(2.3) Proposition. The -radical r(a) of any element a of L is
related to a.

Proof. If there is an element x of X(r(a)) which is -related to
a, then x would be contained in M defined in (2.2). Thus M meets
X(a). This contradicts the above assumption.

Let M be the -system defined in (2.2). Then 0 is not contained
in M. In other words M does not meet 2:(0)-(0}. Then by (1.4)
there exists a maximal element p in the set of all elements b e L such
that X(b) does not meet M, or equivalently, in the set of all elements
0-related to a. Each such maximal element is necessarily -prime.



138 K. MURATA and D. F. Hsu [Vol. 49,

In view of the above we put the following"
(2.4) Definition. A maximal -prime element belonging to a is a

maximal element in the set of the elements which are -related to a.
(2.5) Proposition. Each element a of L is less than every maxi-

mal -prime element belonging to a.
Proof. Let p be any maximal -prime element belonging to a.

Then it is sufficient to show that a p is -related to a. Take an arbi-
trary element x in X(a U p). Then we have x <_u U v for suitable u e X(a)
and v e X(p). This implies x<_u (v), nd implies (x) <_u [2 ().
Hence we have x’<_uU(v) 2or every x’ in X((x)). We let v’ be an
element of X((v)) with x’_< u U v’. Then since v is -related to a, there
is an element z o X’(a) with v’z<_a. We have therefore x’z<_(uU v’)z

uz U v’z

_
az a= a. This means x is -related to a. Thus we proved

that a U p is -related to a. q.e.d.
By using (1.4) and considering M in (2.2) we can prove the ol-

lowing"
(2.5) Proposition. Let a be an element of L. Then every ele-

ment of or of L which is -related to a is less than a maximal -prime
element belonging to a.

Let R be an associative ring with unity quantity. An element a
of R is called here a left -p divisor of zero (p or principal), iff the
image o the principal (two-sided) ideal (a) by the map is (let) -re-
lated to the zero ideal of R. In particular, i is the trivial map
(a)(a), the left -p divisor of zero is the true left divisor of zero in
the sense o2 Walt [8]. By using (2.6) we obtain that an element a of R
is let -p divisor of zero if and only if a is contained in the set-union
of the maximal -prime ideals belonging to zero.

Principal -components o elements in L can be defined naturally.
By using (2.6) we obtain decompositions o elements into their princi-
pal -components, which will be shown in [5].
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