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28. Generalized Prime Elements in a Compactly
Generated 1-Semigroup. I

By Kentaro MURATA*® and Derbiau F. Hsu**®
(Comm. by Kenjiro SHODA, M. J. A., Feb. 12, 1973)

In [6] by introducing f-systems authors have defined f-prime ideals
in rings as a generalization of prime ideals [2] and s-prime ideals [8],
and generalized under certain assumptions usual decomposition theo-
rems of ideals and the concept of relatedness in general rings [2], [3],
[7], [8]. The aim of the present note is to present similar results for
“elements’’ of an l-semigroup with some restricted compact generator
system. The results obtained here are applicable for general rings
and some kind of algebraic systems.

1. Mapping ¢, ¢-Prime Elements.

Let L be a em-lattice [1] with the following four conditions:

(1) L has the greatest element e.

(2) L has the least element 0.

(8) Both ae and ea are less than a, i.e. ce<a and ea<a.

(4) L has a compact generator system [4].

It is then easy to see that a0=0a=0, ab<a and ab<bd for any a,
b in L. If in particular e is unity quantity, the condition (3) is super-
fluous. From now on X will denote a compact generator system of L,
2(a) the set of the compact elements (elements in X) which are less
than a, and 2’(a) the complement of X(a) in 2. Throughout this note
we suppose that

(%) if ued(@Ub), there exists an element x of 2(a) such that
J(xUDb)s>u, where a, b are in L.

Let R be an associative or nonassociative ring (or more generally
a ringoid [1]), and let Lz, 2 and 2% be the sets of all (two-sided) ide-
als of R, of all principal ideals of R and of all finitely generated ideals
of R, respectively. Then it can be shown that L, is a cm-lattice with
1), (2), 3) and (4). It is easy to see that X, is a compact generator
system with the condition (x). Similarly for 3%. Let G be an arbitra-
ry group, and let L;, X, and 2% be the sets of all normal subgroups of
G, of all normal subgroups with single generators and of all finitely
generated normal subgroups of G, respectively. Then it can be shown
that L, is a em-lattice under inclusion relation and commutator-prod-
uct. It is then easily verified that the conditions (1), (2), (3) and (4)
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hold for L, and both X; and 2% are compact generator systems satis-
fying the condition ().

A subset M* of X is called a p-system [4], iff there is an element 2
of M* such that z<xy for any two elements £ and y in M*. An ele-
ment p is prime, iff whenever a product of two elements of L is less
than p, then at least one of the factors is less than p. Then it can be
proved [4] that p is prime if and only if 3'(p) is a p-system.

Now we consider a map ¢: x—¢(x) from 5 into L with the follow-
ing two conditions:

1°) z<p(x) for every element x e 2,

(2°) u<p(x)Ua implies p(u) <e(x) Ua, where x, ue X and a € L.

(1.1) Definition. A subset M of ¥ is called a ¢-system, iff M con-
tains a p-system M*, called the kernel of M, such that 3(p(x)) meets
M* for each element xe€ M. The void set is a ¢-system with void
kernel.

(1.2) Definition. An element p of L is said to be ¢-prime, iff 3'(p)
is a ¢-system.

For example, the greatest element e is ¢-prime.

(1.3) Lemma., For any ¢-prime element p, p(x)p(x,) <p implies
2, <p or x,<D.

Proof. If we suppose that z; is not less than p for i=1, 2, we
can take two elements x2Ff and zF in the kernel M* of 3’(p) such that
xf<¢p(xy) for ¢=1, 2. Choose an element x* of M* with a*<a¥ux¥.
Then we have x* <¢(x)p(x,). Hence p(x,)¢p(x,) is not less than p, which
is a contradiction.

(1.4) Lemma. Let M be a ¢-system with kernel M*, and let a be
an element of L such that X(a) does not meet M. Then there exists a
maximal element p in the set of the elements b such that b>a and X(b)
does not meet M. p is necessarily ¢-prime.

Proof. It is easy to see that the set of the elements b’s is induc-
tive. Hence the existence of p follows from Zorn’s lemma. To prove
that 3’(p) is a ¢-system, we consider the set of the elements ¢ of 3 such
that J(tUp) meets M*. Firstly we show the containments M*CT
C3’(p). The containment M*C T is trivial. Take any element ¢ of T'.
Then we can take an element #* such that u*<tUp and u* ¢ M*. If
we suppose that t<p, then u*<p. This means that M* meets X(p),
which is a contradiction. Accordingly t is not less than p. Thus we
proved the containment TCJ3'(p). Next we will prove that T is a p-
system. Take two arbitrary elements ¢,, £, of T. Then we can find u}
such that u¥*<t,Up and uF ¢ M* for i=1, 2. Let u* be an element of
M* with u*<wu*u¥. Then we have u*<t,t,Up. By using the condi-
tion (%), we can take an element ¢ such that u*<tUp,t e 2(¢t,t,). This
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means that 7T is a p-system. Finally we prove that X(p(y)) meets T
for each y € 3'(p). Since 3(yUp) meets M, there is an element u of M
with u<yUp. Then we have u<¢(y)Up, o(w) <o(y) Up by (2°). Now
we can take an element u* of M* such that u*<¢(w). Then u* <e(y)
Up. Since there is an element ¢ of 3(¢(y)) such that u*<tUp, M*
meets J(tUp), whence t is an element of 7. Thus 3(p(y)) meets 7.
Therefore we proved that 2’(p) is a ¢-system with kernel T.

(1.5) Definition. A ¢-radical of an element a of L, denoted by
7,(@), is the supremum (join) of the element x of ¥ which have the
property that every p-system containing x meets 3(a).

By using (1.4) we can prove the following theorem, which is simi-
lar to the proof of Theorem 1 in [4].

(1.6) Theorem. The ¢-radical of any element a of L is the in-
fimum of all the p-prime elements containing a.

Let a be an element of L such that 3(e) does not meet the p-system
M with kernel M*. Then the family of all ¢-systems which contain
M* and does not meet Y(a) is inductive. Hence by Zorn’s lemma there
exists a maximal p-system M* in that family. We now make M, as
the set of the elements #’s of 2"(a) such that J(¢p(x)) meets M*. Then
evidently M, forms a ¢-system with kernel M} and does not meet 2(a).
By (1.4) there is a ¢-prime element p such that p>a and 2(p) does not
meet M,. We have proved that 2'(p) is a ¢-system with kernel T con-
sisting of the elements ¢ of 3 such that (fUp) meets M¥. Since
ToOM¥, we have T=M¥. Accordingly, 2/(p) coincides with M, by the
definition of M,. In view of this we make the following:

(1.7) Definition. A ¢-prime element p is a quasi-minimal -
prime element belonging to a, iff p>a and there is a kernel M* for the
o-system 3'(p) such that M* is a maximal ¢-system which does not
meet 3(a).

Let a be any fixed element of L, and let p be a ¢-prime element
such as p>a. (The existence of p is assured by e.) Then there exists
a quasi-minimal ¢-prime element p’ belonging to a such that p’<p,
which is clear by the above consideration. From (1.6) we obtain the
following :

(1.8) Theorem. The ¢-radical of any element in L is represented
as the infimum of all quasi-minimal p-prime elements belonging to a.

Let A be any two-sided ideal of an associative or nonassociative
ring (or ringoid) B. The ¢-radical of A and the quasi-minimal ¢-prime
ideal belonging to A are defined in the obvious way. Similarly for a
normal subgroup N of a group G. Then we have the following state-
ments:

The ¢-radical of any ideal A of R is represented as the intersection



No. 2] Generalized Prime Elements in [-Semigroup. I 137

of all quasi-minimal p-prime ideals belonging to A.

The ¢-radical of any normal subgroup N of G is represented as the
intersection of all quasi-minimal p-prime normal subgroups belonging
to N.

2. ¢@-Related Elements.

In this section we let L be an associative cm-lattice (i.e. cl-semi-
group [1]) with the conditions (1), (2), (38), (4) and (x). Moreover we
assume that the compact generator system X is closed under multipli-
cation. Then any multiplicatively closed subset of X is a ¢-system.

If an associative ring (or ringoid) has unity quantity, both Xz and
2% are multiplicatively closed. If G is a group of nilpotent of class 2,
L, is a cl-semigroup with the multiplicatively closed system X,.

Following [3], [6], [7] and [8], we define “p-related to’’ and “p-un-
related to’’ for elements of L and in particular of 3.

(2.1) Definition. An element x of X is said to be (left) ¢-related
to a e L, iff for every ' of Y(p(x)) there exists an element u of X'(a)
such that z’u is in Y(a). An element b of L is said to be (left) ¢-relat-
ed to a, iff every y of J(b) is ¢-related to a. Elements in L (or in X)
is said to be (left) p-unrelated to a, iff they are not ¢-related to a.

We can prove easily the following:

(2.2) Lemma. The set M, of all elements which are in X and ¢-
unrelated to a is a p-system with a multiplicatively closed kernel.

If the least element 0 is p-related to each element a of L, then each
element of L is ¢ related to itself, and conversely. For, if we assume
that 0 is ¢-related to a, then for every z e X(¢) we have z<aUp(0),
p(@)<aUe(0). Hence we get 2’ <aU¢(0) for any &’ of J(p(x)). By the
condition (x) we can choose two elements u € X(a) and z ¢ 3(¢(0)) with
2’<uUz. Since there is an element v of 3’(a) with zv<a, we obtain
v<(uUz)v=uvUzv<avUa=a. Hence = is ¢-related to a. There-
fore a is p-related to a. The converse is trivial.

In the rest of this section we assume, as in the case of [5], that
each element of L is ¢-related to itself. Then we obtain

(2.3) Proposition. The g-radical r,(a) of any element a of L is ¢-
related to a.

Proof. If there is an element x of 3(r,(a)) which is ¢-related to
a, then z would be contained in M, defined in (2.2). Thus M, meets
2(a). This contradicts the above assumption.

Let M, be the ¢-system defined in (2.2). Then 0 is not contained
in M,. In other words M, does not meet 2(0)={0}. Then by (1.4)
there exists a maximal element p in the set of all elements b € L such
that 2'(b) does not meet M,, or equivalently, in the set of all elements
¢-related to a. Each such maximal element is necessarily o-prime.
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In view of the above we put the following:

(2.4) Definition. A maximal p-prime element belonging to a is a
maximal element in the set of the elements which are ¢-related to a.

(2.5) Proposition. Each element o of L is less than every maxi-
mal o-prime element belonging to a.

Proof. Let p be any maximal ¢-prime element belonging to a.
Then it is sufficient to show that aUp is ¢-related to a. Take an arbi-
trary element z in 3(aUp). Then we have x<uU v for suitable u ¢ 3(@)
and ve3(p). This implies x<uUqp(v), and implies ¢(x) <uUp(v).
Hence we have 2’ <uUgp(v) for every x’ in J(p(x)). We let v’ be an
element of J(p(v)) with 2’<uUv’. Then since v is ¢-related to a, there
is an element z of 3’(a) with v2<a. We have therefore 2’z<(uUv")z
=uzUv2<azUa=a. This means z is ¢-related to . Thus we proved
that aUp is ¢-related to a. q.e.d.

By using (1.4) and considering M, in (2.2) we can prove the fol-
lowing:

(2.6) Proposition. Let a be an element of L. Then every ele-
ment of 3 or of L which is p-related to a is less than a maximal p-prime
element belonging to a.

Let R be an associative ring with unity quantity. An element a
of R is called here a left p-p divisor of zero (p for principal), iff the
image of the principal (two-sided) ideal (a) by the map ¢ is (left) ¢-re-
lated to the zero ideal of R. In particular, if ¢ is the trivial map
(@)—(a), the left ¢-p divisor of zero is the true left divisor of zero in
the sense of Walt [8]. By using (2.6) we obtain that an element a of B
is left ¢-p divisor of zero if and only if @ is contained in the set-union
of the maximal p-prime ideals belonging to zero.

Principal o-components of elements in L can be defined naturally.
By using (2.6) we obtain decompositions of elements into their princi-
pal p-components, which will be shown in [5].
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