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55. A Remark on the Normal Expectations. II

By Marie CHODA
Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjir.5 KUNUGI, M. Z..., April 12, 1973)

1o In the previous note [3], the concept of generalized channels
is introduced. In the note [2], it is proved that, for avon Neumann
algebra and a von Neumann subalgebra of it, the conjugate mapping
of a generalized channel with a certain property is a normal
expectation.

In this note, we shall show that a generalized channel is considered
a normal expectation.

2. Consider a yon Neumann algebra ), denote the conjugate
space of / as /* and the subconjugate space of ull ultra-weakly con-
tinuous linear functionals on / as ,, following after the definition
of Dixmier [4].

Definition (cf. [3]). Let and

_
be two von Neumann algebras,

then a positive linear mapping u of , into _, is called a generalized
channel if maps a normal state to a normal state.

The following proposition is obtained in [3]:
Proposition 1. A positive linear mapping z of , into ., is a

generalized channel if and only if the conjugate mapping * is a posi-
tive normal linear mapping of

_
into preserving the identity.

In the sequel, according to this proposition, a normal positive
linear mapping of avon Neumann algebra into avon Neumann algebra
preserving the identity will be called also a generalized channel.

Let be a yon Neumann algebra and . a von Neumann sub-
algebra of /, then a positive linear mapping e of onto

_
is called

an expectation of j onto

_
if e satisfies the following conditions:

(i) le: 1, and
(ii) (BAC)e-- BAeC for all A e and B, C e _, cf. [5].
The following proposition is proved in [2]:
Proposition 2. Let be a yon Neumann algebra and . a yon

Neumann subalgebra of , then a mapping of _, to , is a gener-
alized channel with
( 1 ) LB--LB for any B e .
if and only if the conjugate mapping e of onto

_
is a normal expec-

tation, where a mapping L on * is defined for A e by
( 2 ) Lf(X)--f(AX) for all f e * and X e .

Let (R)_ be the tensor product of von Neumann algebras j and
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_. We shall identify (R)1 (resp. 1(R)_) with (resp. _).
Theorem 1, Let (R). be the tensor product of yon Neumann

algebras and .. Let be a generalized channel of (resp. _#)) to_
(resp. ) and (resp. ) a normal state on (resp. _q)). Then there

exists a normal expectation e (resp. ) of (R). to

_
(resp. ) such

that
e(A(R)B)=@(A))B (resp. (A(R)B)--((B))A)

for A e and B e _.
Proof, Denote by g(R)f a ultra-weakly continuous linear func-

tional on (R)_ for g e ), and f e _, such that
g(R)f(A(R)B)= g(A)f(B) or A e and B e _,

cf. [2;p. 64]. Since is a normal state, we can define a mapping
e, o _, to ((R)_), by the following:

e,(f 9 (R)f for every f _q?,.
If f is a normal state on , then e,(f) is also. It implies that e, is a
generalized channel of _, to ()Z(R)_),. It is clear that

e,L(f)(A(R)C)=p =(A)f(BC)=Le,(f)(A(R)C)
for f e ,, A e and B, C e _. Therefore, by Proposition 2, the
conjugate mapping e of e, is a normal expectation of (R) onto _.
By the definition of e, it is clear that e satisfies

e(A(R)B)=(p((A))B for A e and B e .
The argument for s goes similarly.

Take and fix a normal state o en . Put =(A)=o(A). 1 for each
A e /and the identity 1 of _, then is a generalized channel of to_. Therefore the theorem implies the following

Corollary 2. Let (R)_q3 be the tensor product of yon Neumann
algebras and .. Then each normal state p on (resp. on .)
induces a normal expectation e of (R)_q) onto _q) (resp. ) such that

e(A(R)B)=(A)B (resp. e(A(R)B)=(B)A).
3. In this section, we shall discuss a completely positive linear

mapping. A positive linear mapping o avon Neumann algebra
to a von Neumann algebra

_
is called completely positive in the sense

of Stinespring [6] (positive definite in the sense of Umegaki [7]), if u(n),
defined by

(n)(A) (u(n)),
is positive on the n n matrix algebra ever , or every n.

Lemma 3. Let

_
be avon Neumann algebra, _q) an abelian von

Neumann algebra and a completely positive linear mapping of to
preserving the identity. Then every state on . induces a state

on (R)_ such that
(A(R)B)=((A)B)

for every A e and B e .
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Proof.
and q a state on .
for all

Let (D. be the algebraic tensor product of and .,
Put

A(R)B (z(A)B),
i=l

By the definition of the algebraic tensor product, is well-defined.
Let , be the representation of

_
on a Hilbert space , induced by

a positive linear functional @ of . Put

U= A@B e@.
i=l

Let e be the cyclic vector with
(T)--(,(T)x, x)

for any T e . Then we have
(U*U)- (z(AA)BB)

(,((AA)BB)x, x)
i,j

(,((AA)),(B)x, z,(B)x).

Since and z are completely positive, the composition is com-
pletely positive too, and so is positive. It is clear that is linear
and (1)= 1. Therefore is a state on, and there exists a state
on@which is the extension of . Denote by the same notation
the extension, then we have a state on@ such that

(A@B)--((A)B) or every A e and B e .
Remark. By a theorem of Arveson [1; Proposition 1.2.2], the

hypothesis o the complete positivity o the mapping is reduced to the
positivity since every positive linear mapping of a C*-algebra into an
abelian C*-algebra is automatically completely positive.

Let be avon Neumann subalgebra of avon Neumann algebra. Following after the definition of Umegaki [8], a normal state
on is called a -tracelet if satisfies
( 3 (AB)=(BA) or every A e and B e .
Umegaki proved in [8]"

Theorem A. Let be a yon Neumann algebra and a yon

Neumann subalgebra of . For any faithful -tracelet , there exists
a normal expectation e of onto such that
(4) (A)-(e(A)) for every A e .

Now, we shall show the following theorem"
Theorem 4. Let be a yon Neumann algebra, a a-finite

abelian yon Neumann algebra and a positive linear mapping of to
preserving the identity. Then there exists an expectation e of

onto 1 such that e(A@l)-I@=(A).
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Proof. Let be a faithful normal state on _. By Lemma 3,
there exists a state on (R)_ such that

9(A(R)B)=((A)B) for every A e / and B e ..
Denote by a the vector state on ((R)_) induced by , that is, a is the
aithul normal state on z((R)_) with a(z(T))=(T). Since

_
is

abelian, 1(R)_ is contained in the center of (R)_, so (1(R).) is con-
tained in the center of ((R).). Therefore, a is a faithful (l(R).)-
tracelet. By Theorem A, there exists a normal expectation of
((R)_) onto (1(R).). On the other hand, is aithful on 1(R)_ by
the property of , so z is an isomorphism of 1(R)_ onto z(l(R)_). Let
=; be the inverse of of (1(R).) onto 1(R)_. Put e-;o e , then
e is an expectation o (R). onto 1(R)_. By (4) of and the definition
of e, we have the following equalities"

9(e(A(R) I)(I(R)B)) a( (A(R)I)(I(R)B))
a((A(R)I)(I(R)B))
9((A(R)I)(I(R)B))

=9(A(R)B)
=@(=(A)B)

9((I(R)=(A )(I(R)B))
for every A e and B e _. Therefore

e(A(R)l)= I(R)=(A) for every A e ,
because is faithful on 1(R)_, which completes the proof.

Corollary 5o Let be a yon Neumann algebra, a a-finite
abelian yon Neumann algebra and = a generalized channel of to .
Then there exists an expectation e of (R) onto 1(R). with

e(A(R)l)-- I(R)=(A)
for all A e .

By this corollary, a generalized channel of a von Neumann algebra
to a a-finite abelian von Neumann algebra is considered an expec-
tation. Furthermore, the proof of Theorem 4 tells us that the
generalized channel is considered a normal expectation.
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