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95. On Strongly Regular Rings

By Katsuo CHIBA and Hisao TOMINAGA
Department of Mathematics, Okayama University

(Comm. by Kenjiro SHODA, M. J. A., June 12, 1973)

A ring R is called strongly regular if for every element a € R there
exists an element x ¢ R such that a=a?x. As is well-known, R is
strongly regular if and only if one of the following equivalent condi-
tions is satisfied:

(A) For every element a € R there holds a € aR and there exists a
central idempotent e such that aR=¢R.

(B) R is a regular ring without nonzero nilpotent elements.
Obviously, the notion “strongly regular” is right-left symmetric. Next,
a ring R is called a right [left] duo ring if every right [left] ideal of R
is an ideal. Finally, a ring R is called a right [left] V-ring if R*=R
and every right [left] ideal of R is an intersection of maximal right
[left] ideals of R.

It is the purpose of this note to prove the following that contains
[2; Theorem 2], [6; Theorem] and [7; Theorem 3 and Corollary 11:

Theorem. The following conditions are equivalent :

(1) R s strongly regular.

@) R is a regular ring and is a subdirect sum of division rings.

B) INr=It for every left ideal [ and every right ideal t of R.

(4) R contains no nonzero nilpotent elements and R/p is regular
for every prime ideal YCR.

(5) R is a regular, right duo ring.

®) rNt'=1t for each right ideals t,t’ of R.

(7) R is a right duo ring such that every ideal is idempotent.

(8) R is a right duo, right V-ring.

(9) R contains no nonzero nilpotent elements and every completely
prime ideal SR is a maximal right ideal.

B5)-(9). The left-right analogues of (5)-(9).

In the proof of our theorem, we shall use several familiar results,
which are summarized in the next lemma.

Lemma. Let R be a ring without nonzero nilpotent elements, and
let a,b be elements of R.

(@) Ifab=0then ba=0, and so the right annihilator r(a) cotncides
with the left one Ua).

(b) If a is nonzero them R/r(a) contains mo nonzero nilpotent
elements and the residue class @ of a mod r(a) is a non-zero-divisor.
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(¢) If R is a prime ring then R contains no nonzero zero-divisors.

Proof of Theorem. (2)=>1)=>(4), M)=>(5)=>(6)=(7), (1) (and (6))
=(3)=>(6): These are easily seen.

(M=>(@): Let a be an arbitrary element of R, and (a) the (right)
ideal generated by ¢. Then, (a)=(a)*=(a)R(a)=aR(a)=(a?), whence it
follows that a=a?x with some z.

(1)=(2): Since a regular ring is semi-simple, it suffices to prove
that a strongly regular prime ring R is a division ring. Given a non-
zero o € R, there exists a central idempotent e such that a € aR=¢R.
Since e(x—ex)=0 for every x ¢ R, R=eR=aR by Lemma (c). Hence,
e is the identity of R and a is invertible.

(1D)=>(®): It remains only to prove that an arbitrary ideal a of R
is an intersection of maximal ideals. Let b be notin a, and ¢ a central
idempotent such that b ¢ bR=eR. There exists then an ideal m>a
which is maximal with respect to the exclusion of b. Since the set {¢}
is multiplicatively closed and m is maximal with respect to the exclusion
of {¢}, m is a prime ideal. As was shown in the proof of (1)=>(2), R/m
is a division ring, nemely, m is maximal.

(8=(1): Suppose that there exists an element a not contained in
aR. We can find then a maximal (right) ideal m such that a?RCm and
aem. Since RB/m is a division ring, we have a®¢ m, which contradicts
a’RCm.

(4)=(9): This is obvious by the proof of (1)=(2).

(9)=@1): Let a be a nonzero element of B. Then, by Lemma (b),
R=R/r(¢) contains no nonzero nilpotent elements, @ is a non-zero-
divisor of R, and every completely prime ideal C R is a maximal right
ideal of B. Now, let M be the multiplicative semigroup generated by
all the elements d—a’% (x € B). Although the existence of the identity
of R is not assumed, we may write a—a*x=a(1—azx). First, we claim
that M contains 0. In fact, if not, there exists a completely prime
ideal p excluding M (see [1]). However, the existence of the inverse
of Z mod p yields a contradiction. Now, let a(l—az,)- - -a(1—az,)=0,
where 7 is chosen to be minimal. If »>2 then 1—az)---a(1—az,)=0
yields a contradiction a{(1—az,)(1—az,)}- - -a(l—ax,_,) =0 (Lemma (a)).
Next, if n=2 then (1—az)a(l—ax,)a’*=0 yields (1—az,)aa(l—az,) =0,
and hence a(1—ax,)(1—azx,) =0 again by Lemma (a). We have seen
therefore a—ax, € r(a) =I(a), whence it follows (a—a’x,)’=0, namely,
a=a’x,.

Remark. In [7; Theorem 3], E. T. Wong proves also that if R is
a strongly regular ring with 1 then for each a ¢ R there exists a unit
u such that e*u=a. But, G. Ehrlich [3; Theorem 3] has proved the
same with an elementary proof. Next, as a corollary to our theorem,
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we have the following theorem due to R. Hamsher: A commutative
ring R is regular if and only if it has no nonzero nilpotent elements
and every prime ideal C R is maximal. Combining this with a theorem
of W. Krull [4; Satz 10], we obtain at once the result of H. Lal [6;
Theorem]: A commutative ring R with 1 is regular if and only if every
primary ideal C R is maximal.
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