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Department of Mathematics, Hokkaido University

(Comm. by Kinjir5 KUNUCI, M. J..., July 12, 1973)

1. Introduction. The purpose of this paper is to establish the
following theorem.

Theorem. Let F be a closed subset of an open unit disk U-
Suppose the circular projection T(F) of F contains some countable
union {E}=I of closed intervals such that each E (n--l, 2, ...) is a
closed interval [a, b] with Oa b a+l 1 and lim a-- 1. Set

=inf sup k(z) (k-=l, 2, ...). If lim 1 , 2(b--a)(1--ab)
xeE zeF, Izl=x lm(n

0, then F is not thin at z--1.
Notation and terminology. Let C be a complex plane. For a

subset A of C, we denote by 3A the boundary of A in C.
Let U be an open unit disk {[z[<l} in C in this paper. Set T(z)-{zl
(z e U). Then T is a continuous mapping of U into U. For a subset
A of U, we say that T(A) is the circular projection of A. Let a and b
two points of U. Then we define the hyperbolic distance (or length)

a--b For a subset A of U, thehyper-3(a, b) o a and b by (a, b)=
1--ab

bolic diameter/t(A) o A is defined by 5(A)=sup 3(a, b).
abA

We shall use the same notations as in [3], or instance, Co(X),
H, _/-/, H, =o--w, s, the Green capacity C etc.

2. Green potentials on U. Let/ be a (positive Radon) measure

U. Set L(f)--I’fo Td/ for each f of Co(U). Then L is a positiveon

linear unctional on Co(U). By Riesz representation theorem, there

a (positive Radon) measure pr on U such that L(f)=jfd/r.exists

The following properties are easy to see"

(i) ffdgr=_[f(lzl)d/(z) or any non-negative Sorel measurable

unction f on U,

(ii) ;dt=fd[r,
(iii) S(/r)= T(S,), where S, is the support of/.
Let g(z, )--log’/1-. denote" the Green function on U with pole

z--
at e U and p" be a Green potential associated with a (positive Radon)
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measure/ on U. Since g(-lzl, ll)<=g(z,)<=g(Izl, ll), we have
Lemma 1. p"(--Iz])<=p"(z)<=p"(Izl) in U.
By an argument similar to the proof of Hilfssatz 19.1 in [3] nd

elementary properties of capacity, we have
Lemma 2. Let F be a K set in U. Then C(F)>=C(T(F)).
Corollary. Let F be a K set in U. If C(F)--O, then C(T(F))--O.
3. Proposition and lemma.
Proposition. Let F be a closed subset of U and s be a non-negative

superharmonic function in U. Set E= T(F). We define a function q
on (R--E) such that

sup s(z) eE,

0 eSU.
Then s.(z)>H-(--Izl) in U--E.

Proof. First suppose F is an arbitrary compact subset of U.
Since sr is a Green potential, by Frostman’s theornm there exists a

measure/ on F such that st=p". Set w-p". By Kellogg’s theorem
h r-"and the Corollary to Lemma 2 we see that w> quasi everyw e e on

E. We define a function on 3(U--E) as follows q--w on E and 0 on
3U. Then quasi everywhere on 3(U--E). It ollows that w>w
=H->H[- in U--E (cf. [4]). On the other hand, it follows from
Lemma 1 that s(z)-p"(z)>p"(--[z[)=w(--[z[) in U.

Secondly suppose F is an arbitrary closed set in U. Set F--F
1

I1< 1-- - and E’ T(P,) (-- 1, 2, ). We define two funetions

Cn and ar as follows

and

Cn={0 onnE’3U
0 on En+-- on 3U U (E--E).

Then H- >= -H, in U--E and + increases to on (U--E) as n-c.
On observing that s(z)>s(z)>Hyj(= [z])>H-(-=, [zl) in U-E and
that Hg-, converges to H- as n-c (cf. [2], [4]), we have s(z)
>=Hy-(--Jz}) in U--E.

Corollary (A. Beurling [1].
l(z) >---r(V)(T(F)) in U-- T(F)----[zl

Lemma 3 (c. [5]). Let G be an upper half disk {z e U;Im z0}
and E be a Lebesque measurable set on the boundary diameter. If z

y f (1--[ z [0(1--)is a point of G, then 0(E)-_, [--z]ll--zl
d, where z-x+iy

(x, y; real numbers).

1) See p. 30 in [3].
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Corollary. Let E and H be two intervals [, ] and [a, 1) respec-

(1 <a<a<fl<l) Then o0-n(E)> (fl a)(1-- afl)tively -__ 512(1--a)
Proof. We map U-H onto an upper half disk G {z e U Im z 0}

z-a Then S(0)=/. By Lemma 1, we haveby S(z)-
1-az

(o0_(E) 2/-a fs() (1-- a)(1--) d
js(.) (2 + a)(1 +2a)

.(fl--a)(1-afl)

4. Proof of Theorem. Let k(z) be the Martin

kernel on U with pole at e e U (cf. [3]). We say that a closed subset
For Uisthin at a point ee3U if (k,)k. If FoF and F0is
not thin at e, then F is not thin at e.

By a brie consideration, we have
Lemma 4. Let {K}= be a sequence of compact subsets of U with

[_)K--O. Set F-K and
n=l k=n k=n n=l

e 3U, if and only if lim (k)(a)=0 for a point a of U.

Proof of Theorem. Let be a function on 3(U--E) such that
sup kl(Z) e E,

()=
0 eSU.

Then there exists a positive integer no such that a >_ 1 or n>no._ Let
2

K--FT-(E), F=K (k=l,2,...) and Fo--K. By the

Proposition and the Corollary to Lemm 3, we have

(kl)F(0)>_-Hy-(0) E,-- E

k=n

1-->-- 512(1--a0 (b--a)(1--ab) (n>=no),

so that lim (k)(0)>0. By Lemma 4, we observe that F0 is not thin

at z--1 and F(F0) is not thin at z= 1.

x-y >12) If 0<y<xl, then tan-x--tan-ly=tan-
l+xy -(x--y).
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Set
A(O,)-- { U arg (-- 1) 1< 0o, I-- 11< cos 00} 0< O0<

We say that such a domain is a Stolz domain whose vertex is at -1.

If belongs to A(O,), then II--zl 2 and hence k()=1--11-------
1-[z[ cos Oo [1-- z 1

_> eos,, 0o_...1 Then we infer that
4
Corollary 1. Let F be a closed subset of a Stolz domain (6o)

whose vertex is at z-1. Suppose the circular projection T(F) of F
contains some countable union {En}_-i of closed intervals such that each
En (n= 1, 2, .) is a closed interval [an, bn] with Oan bn an/l 1
and lim an 1. If

lim1_ (b--a)(1--ab)
l--a = l--a

hen F is not thin at z-1.
Corollary 2. Let Kn (n=l, 2,...) be a closed interval [an, bn]

such that Oanbnan+ll and liman=l. Set F--[_) Kn. If

lim m(L [a, b]) 0.), then F is not thin at z--1. In particular, if
m([a, 1))

lim (K)0, then F is not thin at z= 1.

Prooo Since

and

1 (b--a)(1--ab)
1--an = 1--a

>_ 1 E (b--a)
1--an =n

(K)
1-a, = 1+3(K)
(K)

1+(K)

(1--a)

1 Y, (b--a)= m (U=n [a/, b])
1--a = m([a, 1))

we obtain Corollary 2.

[ __1 1-2n+-----I](n=l,2 ...) andFExample. If we set K= 1---ffn
= Kn, then F is not thin at z- 1. Moreover the hyperbolic diameter

of K decreases to zero.
Remark 1. We can see that the closed set F in the above example

satisfies the hypothesis of the Theorem, but does not satisfy the hypo-

3) m is a one-dimensional Lebesgue measure.
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thesis of C. Constantinescu and A. Cornea (Hilfssatz 19.3 in [3]).
Remark 2. By Corollary 1, we see that a curve in a Stolz domain

(o) issuing from a point in U and terminating at z= 1 is not thin at
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