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115. Characterizations of Compactness
and Countable Compactness

By Shouro KASAHARA
Kobe University

(Comm. by Kinjird KUNUGI, M. J. A., July 12, 1973)

It is known that if a topological space Y is compact, then the fol-
lowing condition is satisfied.

(*) For every topological space X, each mapping of X into Y
with closed graph is continuous.

The purpose of this note is to show that this condition characterizes
compact spaces among 7T, spaces by proving somewhat strengthened

result. A similar characterization of countably compact spaces is also
stated.

Recall that a net in a set X is an ordered pair (f,(D, <)) of a
directed set (D, <) and a mapping f of D into X. If a is an element
of a directed set (D, <€), we denote by D(a) the set of all x ¢ D with
a<.

Let S be a class of topological spaces containing the class of
Hausdorff completely normal and fully normal spaces. Thus for ex-
ample S may be the class of Hausdorff completely regular spaces or
that of paracompact spaces. We have the following

Theorem 1. A T, topological space Y is compact if and only if
for every topological space X belonging to S, each mapping of X into Y
with closed graph is continuous.

Proof. Only the proof of the “if” part is needed. Suppose that
Y is not compact. Then there is a net (f, (D, <)) in Y which has no
adherent point. Let co ¢ D, and let X=D U {co}. It iseasy to see that
the family P(D)U{D(x) U {co}|x € D} is a base for a topology z on X,
where (D) denotes the power set of D.

To prove that ¢ is Hausdorff, it suffices to show that for every
x € D, there is an element y € D\{x} with z<y, since this implies {x}
N(DW)U{o})=@. To this end suppose the contrary: there is an z e D
such that <y does not hold for any ye D\{x}. If ye D, then we
have <z and y<z for some ze¢ D, and consequently 2=z and y<=.
Therefore we have y<« for all y ¢ D, which yields however a contra-
diction that f(x) is an adherent point of the net (f, (D, <)).

Let us proceed to prove that (X, r) is completely normal. Let A
and B be separated subsets of X, i.e., ANB=ANB=@. If og 4,
then A and A°=X\4 are open disjoint and BC4°¢. If co ¢ B, then B
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and B¢ are open disjoint and AC B¢. Thus (X, 7) is completely normal.

Moreover (X, 7) is fully normal. In fact, each open cover © of X
contains a member G with o ¢ G, and hence the open cover {{x}|x € D}
U{D(a) U{oo}} of X, where a is an element of D such that D(a)U {co}
C @, is a star refinement of (9, as can be readily verified.

Now let b be an element of Y, and consider the mapping f* of X
into Y defined by f*(co)=5b and f*(x)= f(x) for every x ¢ D. To com-
plete the proof, it is enough to show that the graph G(f*) of f* is
closed but f* is not continuous. Let (x,%) e XX Y)\G(f*). The set
U=Y\{f*(x)} is a neighborhood of y. Hence if x ¢ D, then {z} x U is
a neighborhood of (x, %) which is disjoint from G(f*). If x=o0, then
since ¥ is not an adherent point of the net (f, (D, <)), we can find a
neighborhood VCX\{b} of ¥ and an ae D such that VN f(D(a)=0,
and so we have ((D(a) U {0} X V)N G(f*)=0, which shows that G(f*)
is closed. On the other hand, the identity mapping e of D into itself
constitutes, together with (D, <), anet (e, (D, <)) in X which obviously
converges to co. However f=f*oe can not converge to b= f*(oo0).
This completes the proof.

As can easily be seen, a similar argument establishes the implica-
tion (3)=>(1) of the following theorem, in which N denotes the one-point
compactification of N, the set of all positive integers, with the discrete
topology. The implication (1)=>(2) is due to P. E. Long.*

Theorem 2. Fora T, topological space Y, the following conditions
are equivalent.

(1) Y is countably compact.

(2) For every first countable topological space X, each mapping
of X into Y with closed graph is continuous.

(3) Each mapping of N into Y with closed graph is continuous.

* P, E. Long: Functions with closed graphs. Amer. Math. Monthly, 76,
930-932 (1969).



