115. Characterizations of Compactness and Countable Compactness

By Shouro KASAHARA Kobe University

(Comm. by Kinjirô Kunugi, M. J. A., July 12, 1973)

It is known that if a topological space Y is compact, then the following condition is satisfied.

(*) For every topological space X, each mapping of X into Y with closed graph is continuous.

The purpose of this note is to show that this condition characterizes compact spaces among T_1 spaces by proving somewhat strengthened result. A similar characterization of countably compact spaces is also stated.

Recall that a net in a set X is an ordered pair $(f,(D,\leqslant))$ of a directed set (D,\leqslant) and a mapping f of D into X. If a is an element of a directed set (D,\leqslant) , we denote by D(a) the set of all $x\in D$ with $a\leqslant x$.

Let S be a class of topological spaces containing the class of Hausdorff completely normal and fully normal spaces. Thus for example S may be the class of Hausdorff completely regular spaces or that of paracompact spaces. We have the following

Theorem 1. A T_1 topological space Y is compact if and only if for every topological space X belonging to S, each mapping of X into Y with closed graph is continuous.

Proof. Only the proof of the "if" part is needed. Suppose that Y is not compact. Then there is a net $(f,(D,\leqslant))$ in Y which has no adherent point. Let $\infty \notin D$, and let $X=D\cup \{\infty\}$. It is easy to see that the family $\mathcal{P}(D)\cup \{D(x)\cup \{\infty\}|x\in D\}$ is a base for a topology τ on X, where $\mathcal{P}(D)$ denotes the power set of D.

To prove that τ is Hausdorff, it suffices to show that for every $x \in D$, there is an element $y \in D \setminus \{x\}$ with $x \leqslant y$, since this implies $\{x\} \cap (D(y) \cup \{\infty\}) = \emptyset$. To this end suppose the contrary: there is an $x \in D$ such that $x \leqslant y$ does not hold for any $y \in D \setminus \{x\}$. If $y \in D$, then we have $x \leqslant z$ and $y \leqslant z$ for some $z \in D$, and consequently z = x and $y \leqslant x$. Therefore we have $y \leqslant x$ for all $y \in D$, which yields however a contradiction that f(x) is an adherent point of the net $(f, (D, \leqslant))$.

Let us proceed to prove that (X, τ) is completely normal. Let A and B be separated subsets of X, i.e., $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. If $\infty \notin \overline{A}$, then \overline{A} and $\overline{A}^c = X \setminus \overline{A}$ are open disjoint and $B \subset \overline{A}^c$. If $\infty \notin B$, then B

and \overline{B}^c are open disjoint and $A \subset \overline{B}^c$. Thus (X, τ) is completely normal.

Moreover (X, τ) is fully normal. In fact, each open cover \mathcal{O} of X contains a member G with $\infty \in G$, and hence the open cover $\{\{x\} \mid x \in D\}$ $\cup \{D(a) \cup \{\infty\}\}$ of X, where a is an element of D such that $D(a) \cup \{\infty\}$ $\subset G$, is a star refinement of \mathcal{O} , as can be readily verified.

Now let b be an element of Y, and consider the mapping f^* of X into Y defined by $f^*(\infty) = b$ and $f^*(x) = f(x)$ for every $x \in D$. To complete the proof, it is enough to show that the graph $G(f^*)$ of f^* is closed but f^* is not continuous. Let $(x,y) \in (X \times Y) \setminus G(f^*)$. The set $U = Y \setminus \{f^*(x)\}$ is a neighborhood of y. Hence if $x \in D$, then $\{x\} \times U$ is a neighborhood of (x,y) which is disjoint from $G(f^*)$. If $x = \infty$, then since y is not an adherent point of the net $(f,(D,\leqslant))$, we can find a neighborhood $V \subset X \setminus \{b\}$ of y and an $a \in D$ such that $V \cap f(D(a)) = \emptyset$, and so we have $((D(a) \cup \{\infty\}) \times V) \cap G(f^*) = \emptyset$, which shows that $G(f^*)$ is closed. On the other hand, the identity mapping e of D into itself constitutes, together with (D,\leqslant) , a net $(e,(D,\leqslant))$ in X which obviously converges to ∞ . However $f = f^* \circ e$ can not converge to $b = f^*(\infty)$. This completes the proof.

As can easily be seen, a similar argument establishes the implication $(3)\Rightarrow(1)$ of the following theorem, in which \overline{N} denotes the one-point compactification of N, the set of all positive integers, with the discrete topology. The implication $(1)\Rightarrow(2)$ is due to P. E. Long.*

Theorem 2. For a T_1 topological space Y, the following conditions are equivalent.

- (1) Y is countably compact.
- (2) For every first countable topological space X, each mapping of X into Y with closed graph is continuous.
 - (3) Each mapping of \bar{N} into Y with closed graph is continuous.

^{*)} P. E. Long: Functions with closed graphs. Amer. Math. Monthly, 76, 930-932 (1969).