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1. Introduction. This note is concerned with the abstract
Cauchy problem for a linear operator A (with domain D(A) and range
R(A)) in a Banach space X. The problem considered here is to char-
acterize the complete infinitesimal generator (or infinitesimal generator)
of a semigroup o some class in terms of the abstract Cauchy problem.
This problem was first treated by Hille and in [4], Phillips character-
ized the infinitesimal generator (simply i.g.) o a semigroup of class
(Co). His ormulation o the abstract Cauchy problem (for a linear
operator A) is as follows"

ACP--Given an element x e X, fixed a unction u(t)=u(t; x)
satisfying (i) u(t) is strongly continuously differentiable in t>_0, (ii)
u(t) e D(A) and (d/dt)u(t)=Au(t) for each t0 and (iii) u(O;x)--x.

A purpose of this note is to characterize the complete infinitesimal
generator (c.i.g.) of a semigroup of class (C()) in terms of ACP. But
some properties o semigroups o class (C()) (k_ 1) suggest the other
formulation o the abstract Cauchy problem (see [3 p. 251]). For this
sake, we introduced a less restrictive formulation"

WCP--Given an element x e X, find a function u(t)=u(t; x)
satisfying (i’) u(t) is strongly continuous in t>_0 and strongly continu-
ously differentiable in t0 and conditions (ii) and (iii) in ACP.

We shall call the X-valued unction u(t) satisfying (i) (or (i’)),
(ii) and (iii) the solution of (APC; A, x) (or WCP; A, x)). In com-
parison with the solution of ACP, the behavior of the derivative of
the solution of WCP has no restriction near t--0. Therefore, this
ormulation is called the weak Cauchy problem in [2] and is denoted
by WCP in this note. However, the relationship between ACP and
WCP when A has a nonvacuous resolvent set is described in Lemma
1.2.

Now, we state our result.
Theorem 1.1. Let A be a closed linear operator with dense domain

and nonvacuous resolvent set, and let k be a positive integer. Suppose
that for each x e D(A) there is a unique solution u(t x) of (WCP A, x)
(or (ACP A, x)) such that u(t ;x) e D(A) for each tO. Then A is the
c.i.g, of a semigroup {T(t)}t>0 of class (C()) (or (C_1))) such that u(t x)
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T(t)x for each x e D(A).
Lemma 1.2. Let A be a closed linear operator with nonvacuous

resolvent set p(A) and let n>_l and k>_l be integers. Suppose that
u(t) is a solution to (WCP; A,x) such that u(t) e D(A) then v(t)
=R(20; A)nu(t) is a solution to (ACP; A,R(20; A)x) such that v(t)
e D(A /n) for all t O, where o e p(A) and R(2o A)d enotes the resolvent
of A.

Lemma 1.2 gives two remarks on Theorem 1.1. First, we see that,
if for every x e D(A) there is a unique solution u(t x) to (WCP A, x)
such that u(t;x)e D(A) then for every y e D(A/) there is a unique
solution v(t; y) to (ACP; A, y) such that v(t;y)e D(A/I). Therefore,
we may only consider the case when u(t; x) of Theorem 1.1 is a solu-
tion of (ACP; A, x). Next, as for the uniqueness of the solution, we
only assumed in Theorem 1.1 that, for every x e D(A) there is a unique
solution u(t ;x) to (ACP; A, x) such that u(t ;x)e D(A) for every t0.
But this assumption and Lemma 1.2 imply that, or every x e D(A)
there is a unique solution to (ACP; A, x).

Outline of the proof of Theorem 1.1 is given in 3. Classes
(C()), k-0,1,..., of semigroups o bounded linear operators has
recently been introduced by Oharu [3] and it is proved that the con-
verse o Theorem 1.1 is true. Therefore, the c.i.g, o a semigroup of
class (C()) (k>_l) is characterized in terms of both ACP and WCP.
In 2 oi this note, we give a summary of basic properties o these
semigroups and the converse o Theorem 1.1 is shown there. It is
shown in [3 p. 255] that the class (C(0)) is just the same as the familiar
class (Co). By virtue o this act and Theorem 1.1, we obtain the first
theorem in [4]" Let A be a closed linear operator with dense domain
and nonvacuous resolvent set. Suppose that for each x e D(A) there
is a unique solution u(t x) of (ACP A, x). Then A is the i.g. of a semi-
group {T(t)}t>o o class (Co) such that u(t;x)--T(t)x or all x e D(A).

In [4], Phillips also introduced another ormulation o the abstract
Catchy problem, by imposing the following (1’9 instead o (i) o ACP.
(i") u(t)is strongly continuously differentiable in t0 and [i u’(t)ll
dt. This formulation is denoted by ACP in [4]. The condition

Ii u’(t)ll dtc is suggested by the property Ii,.T(t)xll dt of the

semigroup {T(t)}t>o o class (0, A). On the other hand, semigroups of
class (C()) (k>_ 1) do not generally have this property. Therefore, we
see that ACP is not adequate to characterize the c.i.g, of a semigroup
of class (C()). The second theorem in [4] gives a characterization of
the c.i.g, of a semigroup of class (0, A) in terms of ACP. In view of
the fact (O,A)(C()), this theorem may also be obtained through
Theorem 1.1.
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2. Classes of semigroups. A family o bounded linear operators
{T(t)},>0 on X to itself is called a semigroup if T(t/s)--T(t)T(s) for
t, s0 and T(t) is continuous in the strong operator topology for t0.
In this case, the type. o0--limt_ t- log I[T(t)l[(c is defined and the
set D(Ao)-- {x e X; Aox-- lim h-(T(h)x-x) exists} is dense in

X0--,>0 T(t)(X). Ao is called the infinitesimal generator of {T(t)},>0.
We define F,- {x e X lim 0 T(h)x--x} and call this the continuity set.
Now, we consider a semigroup {T(t)}>0 with the properties"

( I X0 is dense in X,
(II) there is an w)w0 such that for 2 with 2)(o there is a

bounded linear operator R(2) such that

R()x-..[,e-tT(t)x dt for x e Z0,

(III) if R()x- 0 for o, then x- 0.
For a semigroup satisfying (I)--(III), the infinitesimal generator

A0 is closable; the closure Ao-A is called the complete infinitesimal
generator. Moreover A has the resolvent set p(A) containing

{Re 2 } and
(2.1) R(2)-R(2 A) for2
where R(2; A) denotes the resolvent of A.

Definition 2.1. Let {T(t)}t>0 be a semigroup satisfying (I)--(III)
and A be its c.i.g. Then {T(t)}t>o is said to be of class (C())if there
is an integer k_> 0 such that D(A) F,.

Class (C(0)) is just the same as the familiar class (Co). For a semi-
group {T(t)}t>0 of class (C(>), the following assertions hold"

(a) For every integer lO, (d/dt)T(t)x=AT(t)x--T(t)Atx for
x e D(A) and t 0,

AT(s)(b) T(t)x-- x-- lim o x ds for x e D(A),

(c) T(t)x--x--.[todT(s) x ds for x e D(A/).

Proof and detailed explanations will be seen in Oharu [3; 6].
The above assertions imply that for every x e D(A) (or x e D(A /1))
there is a solution u(t x)-- T(t)x to (WCP A, x) (or (ACP A, x)) such
that u(t ;x) e D(A) (or u(t ;x) e D(A/)) for every t0 and the unique-
ness of the solution of ACP is proved in [3; p. 252]. This means the
converse of Theorem 1.1.

3. Outline of the proof of Theorem 1.1. Let u(t; x)( e D(A))
be the solution to (ACP; A,x) (xe D(A)). Define linear operators
{U(t)}t>0, on D(A) to D(A), by xU(t)x-u(t; x). In view of the
uniqueness of the solution of ACP, we see that U(t +s)--U(t)U(s) for
t, s0. By virtue of Lemma 1.2 and the ensuing remarks, we obtain,
in the same way as in [4], the following
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Lemma 3.1. (1) For every TO there is an MrO such that
U(t)xll <_Mrllxll for O<_t<_T and x e D(A), where Ilxll=llxll/llAxll
+...+llAxll. (2) For every x eD(A/), /=1,2,..., we have
(d/dt)U(t)x= U(t)Ax-AU(t)x.

Henceforth we shall regard D(A) as a Banach space [D(A)] with
respect to the norm I1"11. For every t0, we apply the closed graph
theorem to the operator U(t) in [D(A)] and we get

Lemma 3.2. For every tO there is an MtO such that U(t)xll_
Mt x I for x e D(A).
By Lemmas 3.1 and 3.2, we see that the family o operators

{U(t)}t>0 has a unique extension to a semigroup {T(t)}t>o on X and the
type o0 of {T(t)}t>0 is defined as in 2. Furthermore, for every ww0
there is anM0 such that IIT(t)xll_Metllxll_l for t>_0 and x e D(A-).
Using these results and employing the same argument as in [3 p. 229],
we get

Lemma 3.3. The half plane {Re 2 o0} is contained in the resolvent
set p(A) of A and we have

(3.1) R(2 A)x=fe-tT(t) x dt

for x e D(A-I) and Re w0.
Proof of Theorem 1.1. First, we observe that D(A-I) ,.

Since {T(t)x; x e D(A-), t0} is dense in X and is contained in X0,
we get condition (I). From (3.1), we obtain conditions (II) and (III)
and by (2.1), we see that A is the c.i.g, of the semigroup {T(t)}t>o Of
class (C(_1)). Therefore, the proof is complete.
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