No. 8] Proc. Japan Acad., 49 (1973) 605

133. Bounded Variation Property of a Measure

By Masahiro TAKAHASHI
Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjird6 KuNUGI, M. J. A., Oct. 12, 1973)

1. Introduction. For an integral structure I'=(4; S, G, Q) de-
fined in [3], we shall discuss in this paper a certain type of bounded
variation property of a pre-measure pc Q. Through the discussion,
some properties of the ‘indefinite integral’ o(-, f, ), where ¢ is an
integral with respect to I, and a theorem similar to Lebesgue’s bound-
ed convergence theorem will be obtained.

2. Bounded variation property.

Assumption 1. M is a set and S is a ring of subsets of M. G is
a topological additive group and p is a G-valued pre-measure on S.

Let us denote by CJ/ the system of neighbourhoods of 0 ¢ G.

The pre-measure y is locally s-bounded if, for any X e S and X, € S,
1=1,2, - .-, such that X,X,=0 (j#k), and for any V ¢ C{/, there exists
a positive integer n such that x(XX,) ¢ V for any i=mn.

Proposition 1. If S is a pseudo-g-ring and p is a measure, then
r 18 locally s-bounded.

Proof. Let X and X,, i=1,2, -.-, be elements of S such that
X,X,=0 (j#k) and V an element of C{/. Since S is a pseudo-s-ring,
Y,=Up,. XX, is an element of S for each n=1,2,-... Since p is a
measure, it follows from Y, | 0 (n—o0) that (Y,)—0 (n—cc). Hence,
for an element V, of €/ such that V,—V,CV, we have a positive inte-
ger n such that w(Y,) € V, for any ¢=n. For this » and for any i{=n,
we have pXX)=p¥,—~Y, )=p(Y)— (Y, )eV,—V,CV, which
proves the proposition.

For an element V of C{/, an element X of § is of V-variation if
w(XY)eV for any Y e S.

Then the following is easily seen:

Proposition 2. If an element X of S is of V-variation with V e CV/,
then XY is of V-variation for any Y € S.

Proposition 3. Suppose that pis a locally s-bounded measure and
X;]0(@—>o0) for X;e8,1=1,2,---. Then for any V € O there exists
a positive integer n such that X, is of V-variation.

Proof. Let us assume that no X, is of V-variation. Let V, be an
element of ¢/ such that 2V,CV. Put 4,=1 and assume that a positive
integer i,_, is defined. Then we have an element Y, _, of S such that
Y, X, ,andu(Y,;,_)eV. SinceY X))

Tn—1

— in—lXj l 0 (j—)OO) implies #(Yin—l
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—0 (j—o0), there exists an i,>7%,_, such that (Y, _ X;) eV, Putting
Z,=Y, _,+Y, X, wehave positive integers i, and Z, € S,n=1,2,- - -,
defined inductively. It follows from V 2 u(Y,, )=pZ,)+u(Y,, X;)
euZ,)+V, that u(Z,) ¢ V,. The relations Z,X, =0 and Z,CY,
cX,,_ ,<X,,, where m>n, imply that Z,Z,=0 (j#k). Thus the locally
s-boundedness of x implies the existence of » such that u(Z,)=u(X,Z,)
€ V,. This is a contradiction and hence our proposition is proved.

Assumption 2. ¢ 18 an integral with respect to an integral struc-
ture (4; S, G, Q) with A=M, G, K,J) and p is an element of Q. Fur-
ther

1) Gis a subgroup of the fundamental functional group of A de-
termined by S.

2) For each ke K, the map ¢, of G into J defined by ¢ (9)=g-k
is continuous.

Let us denote by 94 the system of neighbourhoods of 0 ¢ J.

Lemma 1. Suppose that X e S and that B is a totally bounded
subset of K. Then for any W e 9V there exists an element V of I/
satisfying the condition: if Y is an element of V-variation in S and
if YCX, then it follows that oY, f,p) e W for any fe G such that
f(Y)cB.

Proof. (P1) Let &F be the total functional group of 4 and &, the
subgroup of &F generated by SK. Denote by J the abstract integral
derived from ¢ relative to p. Then, for a fixed W,e 9 such that
2W,C W, there exists a neighbourhood U of 0 € K such that J(X, U N Q)

C W, Here we write ﬁ’:{flfe &, f(M)c U’} for each U'CK.

(L1) Let U, be a neighbourhood of 0 ¢ K such that —U,=U, and
3U,cU. Since B is totally bounded, there exist b,¢ K, j=1,2, .--,n,
such that B\ 7., (b,+U,).

(P2) For a fixed W, e ¥ such that nW,CW,, the continuity of
the map G 5 g—g-b; € J implies the existence of V; € ¢{/ such that V;-b;
C W, for each j.

(L2) Put V=\,V,;eC) and let Y be an element of V-variation
in S such that YcX. Then it suffices to show that J(Y, f) e W for
any f e G such that f(Y)CB. Putting g=Yf we have ge G,NG and
this implies the existence of » ¢ G, such that g—+ € U,. We can write
v=>m, Z.a, for some Z,e¢S and a,€K, k=1,2,...,m, such that
72 =0 (k+k). It may be assumed that > 7, Z,=Y and Z,#0 for
each k. Let 2z, be an element of Z,. Then we have g(z;)=a,+{g9(z)
—(2)} € a,+ U, and the relation g(z;)= f(z;) € B implies the existence
of 7, with 1<4j,<n such that g(z,) € b;,,+U,. Thus it follows that a,
—b,, €20, Putting ¢=>7,2Z,b;,, we have ¢c G,CG and +—¢

=3, Z(ay—b,,) € 20, which implies g —p=(g— )+ —¢) € 3T, .



No. 8] Bounded Variation Property 607

Put P;=3;.,Z;, 7=1,2,---,n. Then it follows that o=377_, P;b;
and the V-variation property of Y implies that «(YP,) e VCV, for
each 7=1,2, .. .,n.

(P3) Since g,pc Gand g—gpe U imply Y(g—o) € Ung, it follows
that YY,9—)=9XY,9—9p)=I9(X,Y(g—¢)) € W,. Further we have
IY, =9, 31 Pb) =271 9 Y Py b) =23 (YP;)-b;e 375, V;-b,
cnW,CcW, Hence we have JY, )=I9Y,9)=97Y,9—¢) + IY, )
e2W,CWwW.

Thus Lemma 1 is proved. Since f(X) is totally bounded for f e G
and X € S (Theorem 3.2 in [4]), then follows Corollary 1 below, which
implies the absolute continuity, in a sense, of the indefinite integral
(-, fy .

Corollary 1. Let f be an element of G. Then for any X € S and
W e 9 there exists an element V of CIV satisfying the condition: if an
element Y ¢ S contained in X is of V-variation then it follows that
oY, f,weW.

Corollary 2. Suppose that p is a locally s-bounded measure and
X; 10 (i—»0) for X, eS8, t=1,2,.... Then for any totally bounded
subset B of K and for any W e G there exists a positive integer n
satisfying the condition: for any Y € S such that YC X, and for any
f e G such that f(Y)CB it holds that o(Y, f,p) e W.

Proof. For the sets X=X,¢S, BCK and We 9y, let V be an
element of €/ satisfying the condition stated in Lemma 1. Then Pro-
position 3 implies the existence of n such that X, is of V-variation.
The relations Y e S and Y X,C X imply that Y is of V-variation and
thus the relations f e G and f(Y)CB imply o(Y, f, 1) € W.

Let us show that the indefinite integral o(-, f, ) is a measure if
S0 is p:

Proposition 4. Suppose that p is a measure and X; | 0 (¢—oc0) for
X,eS, i=1,2,.... Then for any fe G it holds that o(X,, f, £H)—0
(t—00).

Proof. For any We 9, it suffices to show the existence of a
positive integer I such that o(X;, f, ) € W for each ¢1=1. For X=X,
let us consider the neighbourhoods W, and U stated in (P1) in the proof
of Lemma 1. Putting g=Xf we have g € G,N G, which implies the
existence of ¢pe G,C & such that g—gaeﬁ' . Here we may write ¢
=>7",P;b; with P;e Sand b,¢ K, j=1,2,---,n, such that P;P; =0
(G#4). Now let us consider the neighbourhoods W, and V, j
=1,2,...,n, stated in (P2). For each j, we have X,P; | 0 (i—o0) and
this implies the existence of I; such that (X, P,) eV, for any i=1;.
Put l=max (,1,, - - -,1,) and for any fixed i=! put Y=X,;. Then we

are to show that J(Y, f) ¢ W and this follows from the arguments in
(P3).
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Theorem 1. Suppose that S is a pseudo-o-ring and p is a measure.
Let X be an element of S and let f and f,;, 1=1,2, -- -, be elements of
G such that: each f;— f is measurable? and \ )7, fi(X) is totally bound-
ed. Then the pointwise convergence f(x)— f(x) (i—oo) implies the
convergence o(X, fy, —a(X, f, 1) (—o0).

Proof. The subset f(X) of the closure B of the totally bounded
set B=J7, f«(X) is also totally bounded. Hence the subset
U ((Fi— (X)) of the set {u—wv|u e B, v € B} is totally bounded. This
implies that we may assume f=0.

Denote by J the abstract integral derived from ¢ relative to 4 and
let W be an element of 9. Then it is sufficient to show the existence
of a positive integer »n such that J(X, f,) e W for each i=n.

For a fixed W, e 9 such that 2W,C W there exists an open neigh-
bourhood U of 0 ¢ K such that J(X,))cW,, where U={g|g € G, g(M)
cU}. For each %, the measurability of f, implies f; (U)NX e S.
Hence, putting X;={x|z e X, f,(x) ¢ U}, we have X,=X—f(0)=X
— (/7' ()N X) and this implies X; e S. For Y,=,; X;, 7=1,2,---,
it holds that X>Y,¢ S and Y,DY,D.... Now we assert that Y, | 0
(j—>o0). Otherwise there exists an element ¥y of (7., Y;. Then for
each j there exists 4,>7 such that f;(y) ¢ U and this contradicts the
convergence of f;(¥) to 0. Since Proposition 1 implies that x is locally
s-bounded, and since B=|_J;, f(X) is totally bounded, Corollary 2 to
Lemma 1 implies the existence of a positive integer n satisfying the
condition: for any Z e S such that ZCY, and for any ke G such that
h(Z)C B it holds that 9Y(Z, h) ¢ W,. Then we are to show that J(X, f,)
e W for each i=n.

It follows from f (Y, Cf.(X)CB that 9Y,,f)e W, Since
Y, DY, DX, implies X-Y,cX—-X,, we have f,(x)eU for any
reX—Y, and this implies (X—Y,)f;eU. Thus it follows that
IX-Y,, fo=9X,X-Y,)f)ecW, and hence we have JI(X, f,)
=9I X-Y,, f)+IX,, f)e2W,CW, which proves the theorem.
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1) If K satisfies the first condition of countability, then the measurability of
fi— f follows from the fact that S is a pseudo-o-ring (Corollary 3 to Theorem 3.3 in [4]).



