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1. Introduction. Determination of all homomorphic images of
a given semiautomaton is equivalent to constructing all admissible par-
titions of its state set.

For the case of a one-input semiautomaton, there exists an efficient
method for the construction of all admissible partitions. This can be
done easily by determining all elementary partitions [1], [2].

For the case of a multiple-input semiautomaton, it seems compli-
cated at first sight. But, even in this case, if all elementary partitions
can be constructed, we can use the same procedure as the one-input
case and we can obtain all admissible partitions.

In this note, we shall give an algorithm for constructing all ele-
mentary partitions of the state set in a multiple-input semiautomaton
by using known elementary partitions for the one-input case. We shall
borrow many notations and terms from [1].

2. Preliminaries. Consider a semiautomaton A=(S, Y, M),
where S is a set of states, 3={oy,0,, - - +,0,} (n>2) is a set of inputs,
and M is a set of transition mappings.

Definition 1. Let z be a partition of S. # is called the admissible
closure of z in A if and only if #=11,. ,&;, where {&;; i € 4} is the set of all
admissible partitions in A such that #<&,(7 ¢ 4).

In section 4, we shall give a method for constructing the admissible
closure # of x.

Definition 2. An admissible partition 740 of S in A, where 0
means the identity partition, is called elementary if and only if for
every admissible partition z’ of S in A, 0<a’<x implies #’=0 or n’=r.

3. Structure of elementary partitions. For the semiautomaton
given in the preceding section, we shall construct following one-input
semiautomata :

Put 3,={0;} and M;={0¢}={0¢*} for each natural number 7 (1 <i<n).
Thus, we obtain the one-input semiautomata A,=(S, 2;, M,) A1<i<n).

For each semiautomaton A, (1<i<n), the set of all elementary
partitions of S in A; can be determined by the procedure introduced in
[11,[2]. We denote this set by &,.
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We can now prove the following theorem on the structure of an
elementary partition of Sin A4 :

Theorem 1. If = is an elementary partition of S in A, then
there exist elementary partitions p;e P, (1<i<n) such that p=nr,
where p=2 7, p;.

Proof. For each natural number ¢ (1<i<n), we can consider =
as an admissible partition of Sin 4,. Thus, there exists an elementary
partition p, € P; such that 0<p; <.

Now, we can take the sum of partitions p=3>7,p;. Then, it is
easy to see that 0<p<z. We consider the admissible closure § of p in
A. By virtue of 0<p<r and the admissibility of = in A4, we get 0<p
<z. Since r is elementary in A, § must be equal to #. Q.E.D.

Remark. The converse of the above theorem is not true. Indeed,
there exist some elementary partitions p, ¢ P; (1<i<n) such that g is
not elementary in A, where p=>", p;.

Example. Let A=({1,2, 3}, {0,, 0,}, M) be a semiautomaton whose
transition graph is the following:

o1 @ gy
e 01\
@ 01,02 @ "

Semiautomaton A

g1 7y
O——@ 0 @ 0T o
Semiautomaton A, Semiautomaton A,

er=1{{1,3},{2}} or=1{{1},{2, 3}}

p.={{1}, {2, 3}}
01, p. are elementary in 4, and p] is elementary in A,.
o= +oi={1,2,3)  su={{1,2,3))
pa=putoi={{1},(2,8)}  pu={{1},{2,3))
On 18 elementary in A, but g, is not so.

Theorem 2. Let p, 1<i<n) be partitions such that p, e P; and
put o=, p;. If there exist no partitions p; e P; (1<i<n) such that
§<p (=21, 0), then g is elementary in A.

Proof. Suppose § not to be elementary in A under the above
assumption. Then, there exists an elementary partition = in A such
that 0<z <. In this case, from Theorem 1, there exist elementary
partitions p; e P; (1<i<n) such that ¢'==, where o’=>7,p0;. Con-
sequently, we get 0<g=r<g. But, this is a contradiction. Q.E.D.

4. Computation of #. Let = be a partition of S. For each
natural number p, we construct inductively the partition = of S,
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starting with z® =z. The construction method of 7z (p>1) from z®-?
is as follows:

Let n®*Y={B, B,, - - -, By} be a partition of S, where each of B,’s
is a block of @D,

(1) Foreachpair of numberss,t(1<s<n,1<t<m), compute the set
B,,=B,d2.
(ii) For each pair of numbers i, j (1<, j<m), check whether B,~ By,
according to the following definition :
B,~B, if and only if B;=B,, or there exist some numbers s, t
A<s<n,1<t<m) such that B;NB,,#@, B;N\ By, +0.
(iii) For each pair of numbers i, j (114, j<m), check whether B,~B;,,
according to the following definition :
B,~B, if and only if there exists some sequence of numbers
=1, Uy, Uy, -+ +, 4 =7 SUch that B;, ~B,;,, (w=0,1,2, ..., u—1).
(iv) For each mnatural number ¢ (1<i<m), compute the set B,
:UBtszB,P
(v) Let z® be the partition of S whose set of all blocks is {B;;
1<i<m}.

From the following procedure, the admissible closure # of = can be
determined :

(vi) Find a number q such that ‘9 =g=b,
(vii) Put #=n.

5. Algorithm. We can now give the following algorithm for
constructing all elementary partitions of the state set S in a semi-
automaton A=(S, 2, M) (Z={0y,0y -+,

(i) For each natural number ¢ (1<i<n), construct the one-input
semiautomaton A,=(S, 2;, M,).

(ii) For each natural number i (1<i<n), construct the set of all ele-
mentary partitions of S in A;,t.e., P;.

(iii) Construct the following set:

P={o; p=2, ovpi € Fi}.
(iv) Construct the following set:
P={p;pe P} B ) o
(v ) For each element pin P, construct the set P(p)={5; p<&,&e P}
(vi) Compute the following set:
E=P— U 2.
e

(vii) & forms the set of all elementary partitions of S in A.

6. Example. LetA=({1,2,3,4, 5}, {s,, 0.}, M) be a semiautomaton
whose transition graph is the following :
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01,0 01,02
@ 1,02 @ 1 @
-—
@ 01,02 @

Semiautomaton A

® ‘“gc% 1 <j> ®—2—® "2/@\
®——® @< ®
Semiautomaton A, Semiautomaton A,
Pi={01, p2} P,={pl, 03}
o={{1,3}, {2, 4}, {5}} p1={{1}, {2, 3,4}, {5}}
p.={{1}, {2}, {3}, {4, 5}} o:=1{{1,4},{2}, {3}, {6}}
g’:{‘ou, 0O125 P21 Pzz}
eu=p+p1={{1,2,3,4}, {5}} on={{1,2,3, 4}, {5}}
pu=p1+0:={{1,2,3, 4}}, {5}} p.={{1,2,3, 4}, {5}}
pu=p,+p={{1},{2, 3, 4, 5}} n={{1,2,3,4,5}}
pu=pr+04={{L,4, 5}, 12}, {3)} fu={{1,2,3,4, 5}

P={{{1,2,3,4},{5}},{{1,2,3,4,5}}}
E={{{1,2,3,4},{5}}}
Therefore, {{1,2,3,4},{5}} is the unique elementary partition of
{1’ 2’ 3, 4, 5} in A.
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