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147. Wave Equation with Wentzell’s Boundary Condition
and a Related Semigroup on the Boundary. I

By Tadashi UENO
The College of General Education, University of Tokyo

(Comm. by K.Ssaku YOSIDA, M. $. A., NOV. 12, 1973)

1. For diffusion equation in one dimension, W. Feller [1] deter-
mined all types of possible boundary conditions. A part of the result
was extended by A. D. Wantzell [2] for multi-dimensional case. In
fact, he found a candidate or the most general boundary condition
which is possible or diffusion equation

( 1 U.=Au,
where A is a second order elliptic differential operator on a compact
domain D in R. More precisely, he proved that, under regularity
conditions on A and D, any smooth unction u in the domain of the
generator, which is a contraction of A, of a strongly continuous semi-
group {Tt, t>0} of non-negative linear operators on C(D) with norm
Tt It < 1, ) necessarily satisfies a boundary condition"

Lu(x) =0, x e D.
N-1 N-1

Lu(x)= , (x) u (x)

( 2 ) +.(x)u(x)+(x)Au(x)/l(X)n(X)
+ u(y)--u(x) Ou

3 (x)(y) ,(x, dy),

where {a(x)} is symmetric and non-negative definite, ,(x), 3(x), --/(x)
N} isare non-positive, and ,(x, .) is a measure on D. ((y), 14i4 a

system of functions in C(D) and is a local coordinate in a neighbour-
hood of x, and (3u/3)(x) coincides with the inner normal derivative
(3u/3n)(x).) We sometimes omit the suffix x of . Wentzell also
proved that the boundary condition (2) is actually possible in an im-
portant special case. For the problem to solve (1) with his boundary
condition in general case, we considered a method in [3], [4], which
reduces the problem to solve an integro-differential equation on the

1) Here, the domain of the definition of A is C(D) and A is the closure of
A in C(D).

2) For a more detailed information about the terms in Lu(x), the reader
can consult [2].
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boundary.) Recently, the result was extended by Bony and others [5]
along the same line.

Now, it seems to be of some interest to know whether Wentzell’s
boundary condition is also possible for the wave equation

32( 3 )
t

and to know what is the intuitive meanings of non-classical terms of
the boundary condition, if the answer to the first question is in the af-
firmative. In fact, Feller [6] already solved a one-dimensional wave
equation

2-u-/2u- u, x e (r, r2),
t m s

with boundary condition

u(r) + gu(r) +u(r)=O, i- 1, 2,

and explained 3 to be the effect of point masses attached to nd points

r of a string between r and r.
Here, we construct a semigroup solution o (2)-(3) in a Hilbert

space set up, where A and L are restricted to a typical special case for
simplicity. A result or a general case will be published elsewhere
with a detailed proof. The method is an extension of K. Yosida [8],
where he solved wave equation on R with uniformly elliptic A.)

The author thanks very much to his riend Daisuke Fujiwara or
his kind help during the research of this problem, and also to Masatoshi
Fukushima or his comment.

2. An abstract scheme. Let 0 be a real vector space with an
inner product (f, g), a norm l]fllt and a positive constant c such that
( 4 ) c f I1 f lit, for f e 0,

f) Let and be the completions of 0 withwhere f I (f,
respect to the norms !lfll: and llfll, respectively. We consider as-
sumptions

(A. 1) can be imbedded uniquely in
(A. 2) There is a strongly continuous semigroup {Tt, t0} of

linear operators on with norm
=() of the generator

(A. 3) is a dense subset of

3) This method goes back to, an idea of Feller [1], where D is an interval
and the integro-differential equation on aD here is reduced to a pair of linear
equations with two unknowns.

4) This is the intrinsic form of one-dimensional diffusion operator dis-
covered by Feller [7].

5) As ’or the diffusion semigroup, related results on the Hilbert space set
up have been obtained by H. Kunita [9] and M. Fukushima [10], [11].
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(A. 4) For.a .constant a0,. (a0f--f, f),--.II f I1, for f e .
(A. 5) For a constant K, I(f, g)-- (/g, f)I< K(II f ] + g ]]) for

f ge.
Theorem 1. Under the assumptions (A. 1)-(A. 5), let B be the

direct product space () with norm () (llf]l + llgll)/, and define
G by

Then, G is the generator of a strongly continuous group (U,--t
<} of linear operators on B with norm U < e’.

Corollary. If we write v(t)]=U for e then

d( 5 ) --u=u, lira u(t) f in , lira v(t) g in .
dt -o -o

Remark. (A. 1), (A. 2) and the following conditions imply (A. 3).

( 6 ) a]l(a-A)-f]l<l[fl], for fe (o,
[la(a-A)-f--fl[--.O as a--.c, for f e o. Construction of the solution. Let D be a bounded domain

with smooth boundary in R, and let 0 be the set of all M-times con-
tinuously differentiable functions on D=D 3D for some fixed M3.
We assume

uAu(x)= . 3x (x),- ULu(x) a : @ (x) + (x)Au(x)
( 29

+ + (u(u) u(x)),(x,

where a is a non-negative constant and 3(x) is smooth and non-positive.
(x, dy) is concentrated on D--{x} and has a symmetric density ,(x, y)
with respect to the surface element dy on 3D, such that

u--.,[u] f (u(y) u(x)),(x, dy)
JOD

maps C() into C(3D), and
,= sup (x,y)<c, for >0,

(7)
I() (x, d)<, for x D.

D =1

For real valued fctions f and g, we write
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(f g) - oD
dx

oD
(f(y) f(x))(g(y) g(x)),(x, dy),

where dx is the volume element in case of the integrals on D. We
define

(f, g)8--- (f, g) + (f, g" I I, or f, g e q(o, f (f f)l/,
B.(f, g)=a(f, g)+D(f, g)+a.D(f, g+,(f, g), for f, g e 0, a0,
(f g) B(f g), for f, g e o, f]]=(f f)/. )

Let and be the completions of 0 with respect to []f and f[[,
respectively.

Proposition 1. B.(f, g) can be extended uniquely to a bilinear

functional on . The extension, under the same notation, satisfies
( 8 ) [B(f, g)]< c f . ]g [, c: f [<B(f, f), for f, g e, >O.

Proposition 2. For f and g in o,
( 9 ((a--A)f, g)--(Lf, g}=B.(f, g), 0.

This is proved by the Green-Stokes formulas for D and 3D

(df g) + D(f g) + f, g 0 ,g +D(f,g}--O

and @[f], g}=--,(f, g), which is implied by the symmetry of ,(x, y).
Lemma 1. If {f, n=1,2, ...} in o is a Cauchy sequence in

such that lim ]f--O, then limn_ i]fll=0. Hence, is imbedded
uniquely in .

In case (x)=l, ]]fl]:{(f, f)+(f, f)}n, and hence we have
Corollary. is a set of real valued functions defined on
Proposition ]. If {f, n= l, 2, ...} in o and g e satisfy

limn f[=0 and lim {(Af--g, h)+ (Lf, h}}--0 for each h e o,
then g- O.

Definition. If, for f in , there are a sequence {f, n-- 1, 2, }
in 0 and g e such that lim_ f--f[ 0 and

lim {(Aft--g, h)+(Lfn, h)}=0 for each h e 0,

then we define ]f=g, and denote the set of all such f by
Proposition 4.

(10) (af--Af g)=B,(f g) for f e (A), g
af--Af O, implies f-- 0

Proposition 5. For each v e ,
au--Au-v, 0(11)

has a unique solution u, which satisfies
(12) Bo(u, f)=(v, f) for each f e

6) In general case, we consider non-symmetric B(f,g) and a Hilbert space
J whose norm is equivalent with ]lflI=B.o(f,f)l/2 for a sufficiently large d0. But,
the results and the proofs are essentially the same.

7) By definition, sufficiently smooth f vanishing near aD belongs to (L)
and ALf=Af
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In fact, for a functional F(f)=(v, f), for f e j, there is v* such
that F(f)--(v*, f)t by Riesz theorem. Then, by Milgram-Lax theorem
combined with (8), there is u such that F(f)=(v*, f)t--B.(u, f), which
solves (11). Then, (12) extends the solvability of (11) for v e (, as in

Lemma 2. For each v e (, (11) has a unique solution u which

satisfies (12). Thus, a bounded linear operator G.=(c-A)- is

defined on (, and A is closed in (.
Proposition 6.

lluIl+(llull-IIuIl)=(u, v), or u-G.v, v e 5(.

Ilau-vll]+a(llull-Ilull)--(u, v)-(u, v), for u e G.v, v e
IIu-vll+(-l)llu-vll=(u-v,v), or u-Gv, v eO(-A).
These are proved by using (10). By combing these equalities, we

have
Lemma

Gv ]]< v ]], lim Gv-v II- O, for v e

a G.v [[ < v [l, lim aGv-v I]- O, for v e

Theorem 2. Ar is the generator of a semigroup {Tt, t/>0} on (,
which satisfies (A. 2) and (A. 3). (A. 1), (A. 4) and (A. 5) are satisfied
for (, and .=Az. Hence, the group of operators {Ut,
in Theorem 1 exists.

In aet, (A. 2) and (A. 3) are proved by Lemmas 2 and 3 and
Remark in 2 easily. (A. 4) is clear by (10) and the definition o (f, f)
with a0= 1. (A. 5) is also clear by (10) and the symmetry of B.(f, g)"
(Af g)-- (ALg, f)--B.(g, f) B.(f g) O.

Thus, the wave equation with Wentzell’s boundary condition with
L in (2’) has been solved in the sense of the Corollary to Theorem 1.

Note. We assumed that u=-o(u/)+-(u/)
+..u in Lu(x) is a.- (u/3). But, if A with smooth coefficients
is uniformly elliptic or formally self adjoint, then (A. 1)-(A. 4) hold
true. But, when A is not formally self adjoint,, our present proof needs
/(x)>0 for (A. 5). For v(x, .), a much weaker condition is enough for
(A. 1)-(A. 4). In fact, v(x,.) need not be concentrated on D, or have
a symmetric density. But, our present proof needs v(x,D)<o for
(A. 5). It is not clear that some technical device can remove this con-
dition or not.

We can also construct {Tt} and {Ut} in a similar way to [3], by con-
structing a class of semigroups on 3D first. But, the present proof is
much simpler.



No. 9] Wave Equation with Wentzell’s Boundary Condition. I 677

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

References

W. Feller: The parabolic differential equations and the associated semi-
groups of transformations. Ann. of Math., 5(2), 4.68-519 (1952).

A. D. Wentzell: On lateral conditions for multi-dimensional diffusion pro-
cesses. Teor. Veroyat. Primen., 4, 172-185 (1959) (in Russian).

T. Ueno: The diffusion satisfying Wentzell’s boundary condition and the
Markov process on the boundary. I, II. Proc. Japan Acad., 36, 533-538,
625-629 (1960).

K. Sato and T. Ueno: Multi-dimensional diffusion and the Markov process
on the boundary. J. Math. Kyoto Univ., 4, 530-605 (1965).
Bony, P. Courrge, and P. Priouret: Semi-groupes de Feller sur une
varit bord compacte et problmes aux limites integro-differentiels du
second ordre donnant lieu au principe du maximum. Annals de L’inst.
Fourier, .18, 369-521 (1968).

W. Feller: On the equation of the vibrating string. J. Math. Mech., 8,
339-348 (1959).

--: On second order differential operators. Ann. of Math., 61 (2), 90-
105 (1955).

K. Yosida" An operator-theoretical integration of the wave equation. J.
Math. Soc. Japan, 8, 79-92 (1956).

H. Kunita" General boundary conditions for multi-dimensional diffusion
processes. J. Ma.th. Kyoto Univ., 10, 273-335 (1970).

M. Fukushima: Dirichlet spaces and strong Markov processes. Trans.
Amer. Math. Soc., .162, 185-224 (1971).
: On the generation of Markov processes by symmetric forms.

2nd. Japan-USSR Symp. on Prob. Theory, 2, 1-9 (1972).


