12. A Characterization of Nonstandard Real Fields

By Shouro KASAHARA Kobe University

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1974)

Throughout this note, $(R, 0, 1, +, \cdot, \leq)$, or simply R, denotes the ordered field of real numbers, and \hat{R} the union of all sets R_n defined inductively by $R_0 = R$ and $R_{n+1} = \mathcal{P}(\bigcup_{i=0}^n R_i)$ $(n=0,1,2,\cdots)$, where $\mathcal{P}(X)$ denotes the power set of X. Let \mathcal{U} be a δ -incomplete ultrafilter on an infinite set I. A nonstandard real number is defined to be an individual of the ultrapower of \hat{R} with respect to \mathcal{U} , and the set *R of all nonstandard real numbers to \mathcal{U} , and the set *R of all nonstandard real numbers to \mathcal{R}^I of the mapping $a \mapsto *a$ of \hat{R} into \hat{R}^I defined by *a(t) = a for all $t \in I$, where = and \in in \hat{R}^I are defined for $a, b \in \hat{R}^I$ as follows: a = b if and only if $\{t \in I : a(t) = b(t)\} \in \mathcal{U}$, and $a \in b$ if and only if $\{t \in I : a(t) \in b(t)\} \in \mathcal{U}$. Then as is known*', $(*R, *0, *1, *+, *\cdot, *\leq)$ is a totally ordered field which will be referred in this note as the \mathcal{U} -nonstandard real field. Let I be a set. By nonstandard real field over I we mean a totally ordered field which is isomorphic to some \mathcal{U} -nonstandard real field for a δ -incomplete ultrafilter \mathcal{U} on I.

The purpose of this note is to state a condition characterizing nonstandard real fields among totally ordered fields.

Theorem 1. A totally ordered field K is a nonstandard real field over a set I if and only if it is non-Archimedean and is a homomorphic image of R^{I} , the ring of all real valued functions on I with the pointwise addition and the pointwise multiplication.

This result offers of course an axiom system for a nonstandard real field: A nonstandard real field over a set I is defined to be any non-Archimedean totally ordered field K containing a complete Archimedean subfield R_0 such that K is a homomorphic image of the ring R_0^{ℓ} .

Let K be a totally ordered field. An element x of K is said to be infinitely large if a < x for every rational element $a \in K$. Let I be a set. For each real number a, let *a denote the constant mapping on I defined by *a(t)=a for all $t \in I$. The ordering \leq on the ring R^I is defined as follows: $a \leq b$ if and only if $a(t) \leq b(t)$ for all $t \in I$.

Proof of Theorem 1. It suffices to prove the "if" part. Let φ be the homomorphism of the ring R^I onto K, that is, φ is a mapping of R^I onto K such that $\varphi(\mathbf{a}+\mathbf{b})=\varphi(\mathbf{a})+\varphi(\mathbf{b})$ and $\varphi(\mathbf{a}\mathbf{b})=\varphi(\mathbf{a})\varphi(\mathbf{b})$ for all

^{*)} See for example, W. A. J. Luxemburg: What is nonstandard analysis. Amer. Math. Monthly, **80**, 38-67 (1973).

S. KASAHARA

a, $b \in R^{I}$. Obviously $\varphi(*0)=0$, $\varphi(*1)=1$, and $\varphi(-a)=-\varphi(a)$ for every $a \in R^{I}$. Moreover, as can readily be seen, $\varphi(a^{-1})=\varphi(a)^{-1}$ if $a \in R^{I}$ is regular, i.e., if $a(t)\neq 0$ for all $t \in I$. Hence $\varphi(*a)\neq 0$ for every non-zero $a \in R$, and so the restriction of φ to the set $R'=\{*a \in R^{I}: a \in R\}$ is an injection of R' onto $\varphi(R')$. It follows that $\varphi(R')$ is a copy of the real number field R. On the other hand, $a, b \in R^{I}$ and $a \leq b$ imply $\varphi(a) \leq \varphi(b)$; for, letting

$$\mathbf{c}(t) = \begin{cases} \sqrt{(\mathbf{b} - \mathbf{a})(t)} & \text{if } \mathbf{a}(t) < \mathbf{b}(t), \\ 0 & \text{if } \mathbf{a}(t) = \mathbf{b}(t), \end{cases}$$

we have $\varphi(\boldsymbol{b}) - \varphi(\boldsymbol{a}) = \varphi(\boldsymbol{b} - \boldsymbol{a}) = \varphi(\boldsymbol{c})^2 > 0$ because $\boldsymbol{b} - \boldsymbol{a} = \boldsymbol{c}^2$.

Since K is non-Archimedean, there exists an infinitely large element $x \in K$. The surjectivity of φ ensures the existence of an $x \in R^I$ with $\varphi(x) = x$. Now if $a \in R$, then we have $\varphi(*a) < \varphi(x)$, which implies, by what we have shown above, that $x \le *a$ does not hold, or equivalently that a < x(t) for some $t \in I$. Thus I is an infinite set.

Let S^{\wedge} denote the characteristic function of $S \subset I$, that is $S^{\wedge}(S) = \{1\}$ and $S^{\wedge}(S^{\circ}) = \{0\}$, where S° is the complement of S in I. We shall prove that $U = \{S \in \mathcal{P}(I) : \varphi(S^{\wedge}) = 1\}$ is a δ -incomplete ultrafilter on I. Since $\varphi(I^{\wedge}) = \varphi(*1) = 1$ and $\varphi(\emptyset^{\wedge}) = \varphi(*0) = 0$, we have $U \neq \emptyset$ and $\emptyset \notin U$. If $S, T \in U$, then since $(S \cap T)^{\wedge} = S^{\wedge} \cdot T^{\wedge}$, we have $\varphi((S \cap T)^{\wedge}) = \varphi(S^{\wedge} \cdot T^{\wedge}) = \varphi(S^{\wedge})\varphi(T^{\wedge}) = 1$, and hence $S \cap T \in U$. If $S \in U$ and $S \subset T \subset I$, then $S^{\wedge} \leq T^{\wedge} \leq *1$, and so we have $1 = \varphi(S^{\wedge}) \leq \varphi(T^{\wedge}) \leq \varphi(*1) = 1$, which shows that T is in U. Moreover let S be a subset of I. Then since

$$\varphi(S^{\wedge})\varphi(S^{c_{\wedge}}) = \varphi(S^{\wedge} \cdot S^{c_{\wedge}}) = \varphi(*0) = 0 \quad \text{and} \\ \varphi(S^{\wedge}) + \varphi(S^{c_{\wedge}}) = \varphi(S^{\wedge} + S^{c_{\wedge}}) = \varphi(*1) = 1,$$

it follows that one of $\varphi(S^{\wedge})$, $\varphi(S^{\circ\wedge})$ is 0 and the other is 1. Hence either $S \in \mathcal{U}$ or $S^{\circ} \in \mathcal{U}$. Thus \mathcal{U} is an ultrafilter on *I*. To prove that \mathcal{U} is δ -incomplete, let \mathbf{x} be an element of R^{I} such that $\varphi(\mathbf{x})$ is infinitely large, and let $S_{n} = \{t \in I : n \leq \mathbf{x}(t)\}$ for each positive integer n. Then since $\mathbf{x} \cdot S_{n}^{\circ\wedge} \leq *n$, we have

$$arphi(\mathbf{x}) = arphi(\mathbf{x})arphi(S_n^\wedge + S_n^{c_\wedge}) = arphi(\mathbf{x})arphi(S_n^\wedge) + arphi(\mathbf{x} \cdot S_n^{c_\wedge}) \ \leq arphi(\mathbf{x})arphi(S_n^\wedge) + arphi(*n) < arphi(\mathbf{x})arphi(S_n^\wedge) + arphi(\mathbf{x}),$$

and so we have $0 < \varphi(\mathbf{x})\varphi(S_n^{\wedge})$, which implies $\varphi(S_n^{\wedge}) = 1$. Hence $S_n \in \mathcal{U}$ for every positive integer n. But then for each $t \in I$, there is a positive integer n such that $\mathbf{x}(t) < n$. This shows that the intersection of all S_n 's is empty. Thus \mathcal{U} is δ -incomplete.

We shall now proceed to prove that the U-nonstandard real field $(*R, *0, *1, *+*, *\leq)$ is isomorphic to K. Let $x \in *R$. Then there exists a unique $f(x) \in K$ such that $x_0 \in R^I$ and $x_0 = x$ in \hat{R}^I imply $\varphi(x_0) = f(x)$. In fact, let

$$\mathbf{z}(t) = \begin{cases} \mathbf{x}(t) & \text{if } \mathbf{x}(t) \in R, \\ 0 & \text{otherwise,} \end{cases}$$

and define $f(\mathbf{x}) = \varphi(\mathbf{z})$. If $\mathbf{x}_0 \in \mathbb{R}^I$ and $\mathbf{x}_0 = \mathbf{x}$ in $\widehat{\mathbb{R}}^I$, then the set $S = \{t \in I : \mathbf{z}(t) = \mathbf{x}_0(t)\}$ contains the intersection of the sets $\{t \in I : \mathbf{x}(t) \in \mathbb{R}\}$ and $\{t \in I : \mathbf{x}_0(t) = \mathbf{x}(t)\}$ which are members of \mathcal{U} , and so $S \in \mathcal{U}$. Since $\varphi(S^{\wedge}) = 1$ and $(\mathbf{z} - \mathbf{x}_0) \cdot S^{\wedge} = *0$, we have

$$\varphi(\mathbf{x}_0) = \varphi(\mathbf{x}_0) + \varphi(*0) = \varphi(\mathbf{x}_0) + \varphi((\mathbf{z} - \mathbf{x}_0) \cdot S^{\wedge})$$

= $\varphi(\mathbf{x}_0) + \varphi(\mathbf{z} - \mathbf{x}_0) \cdot 1 = \varphi(\mathbf{z}) = f(\mathbf{x}).$

The uniqueness of such an $f(\mathbf{x})$ follows from the existence of an $\mathbf{x}_0 \in \mathbb{R}^I$ with $\mathbf{x}_0 = \mathbf{x}$ in $\hat{\mathbb{R}}^I$, which is ensured by the fact that the set $\{t \in I : \mathbf{x}(t) \in \mathbb{R}\}$ belongs to \mathcal{U} . Thus f is a mapping of $*\mathbb{R}$ into K.

If $x \in K$, then $\varphi(\mathbf{x}) = x$ for some $\mathbf{x} \in R^I$, and hence we have $f(\mathbf{x}) = \varphi(\mathbf{x}) = x$, which establishes the surjectivity of f.

We claim now that if $a, b \in \mathbb{R}^I$, then $\varphi(a) = \varphi(b)$ if and only if $\{t \in I : a(t) = b(t)\} \in \mathcal{U}$. To prove this, it will suffice to show that $\varphi(a) = 0$ if and only if $S = \{t \in I : a(t) = 0\}$ does belong to \mathcal{U} . To prove the "only if" part of this statement, consider an element $b \in \mathbb{R}^I$ defined by

$$\boldsymbol{b}(t) = \begin{cases} \boldsymbol{a}(t)^{-1} & \text{if } t \notin S, \\ 0 & \text{if } t \in S. \end{cases}$$

Then we have $\varphi(S^{c\wedge}) = \varphi(ab) = \varphi(a)\varphi(b) = 0$, which shows that S is in U. The "if" part of this statement follows immediately from the fact that $a \cdot S^{\wedge} = *0$; i.e. $\varphi(a) = \varphi(a)\varphi(S^{\wedge}) = \varphi(a \cdot S^{\wedge}) = \varphi(*0) = 0$.

In order to prove that f is an injection, suppose that $x, y \in {}^{*}R$ and f(x) = f(y). Then we can find $x_0, y_0 \in R^I$ such that $x_0 = x$ and $y_0 = y$ in \hat{R}^I . Since $\varphi(x_0) = f(x) = f(y) = \varphi(y_0)$, the set $S = \{t \in I : x_0(t) = y_0(t)\}$ belongs to U, and consequently we have $x_0 = y_0$ in \hat{R}^I , which yields the desired conclusion x = y in \hat{R}^I .

Suppose that $x, y, z \in R$ and $x^* + y = z$. Then there exist $x_0, y_0, z_0 \in R^I$ such that $x_0 = x, y_0 = y$ and $z_0 = z$ in \hat{R}^I . Since the sets $\{t \in I : x(t) + y(t) = z(t)\}$, $\{t \in I : x_0(t) = x(t)\}$, $\{t \in I : y_0(t) = y(t)\}$ and $\{t \in I : z_0(t) = z(t)\}$ belong to U, so does their intersection S. But then the set $T = \{t \in I : (x_0 + y_0)(t) = z_0(t)\}$ contains S, and hence T is a member of U. Therefore we have $\varphi(x_0 + y_0) = \varphi(z_0)$ as is shown above. Consequently we obtain

$$f(\mathbf{x}^*+\mathbf{y}) = f(\mathbf{z}) = \varphi(\mathbf{z}_0) = \varphi(\mathbf{x}_0 + \mathbf{y}_0) = \varphi(\mathbf{x}_0) + \varphi(\mathbf{y}_0)$$
$$= f(\mathbf{x}) + f(\mathbf{y}).$$

A similar argument establishes $f(\mathbf{x}^* \cdot \mathbf{y}) = f(\mathbf{x})f(\mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in {}^*R$.

Now suppose that $x, y \in R$ and $x^* \leq y$. Then there exists a $z_0 \in R^I$ such that $0^* \leq z_0 = y^* + (-x)$ in \hat{R}^I . Hence $S = \{t \in I : 0 \leq z_0(t)\} \in U$ and $0 \leq z_0 \cdot S^{\wedge}$ in R^I . Therefore we have

 $0 = \varphi(*0) \le \varphi(z_0 \cdot S^{\wedge}) = \varphi(z_0)\varphi(S^{\wedge}) = \varphi(z_0) = f(y^* + (-x)),$ which implies $f(x) \le f(y)$ because f(-x) = -f(x). This completes the proof.

In the above theorem and definition, the condition that K is a homomorphic image of R^{I} cannot be eliminated. To establish this,

we need the following

Lemma. Let K be a non-Archimedean totally ordered field containing a complete Archimedean subfield R_0 . If x is an infinitely large element of K, then $\sum_{i=0}^{n} a_i x^i < x^{n+1}$ for every $a_0, a_1, \dots, a_n \in R_0$, where x^0 denotes the unit element 1 of K.

Proof. If $a \in R_0$ then we have $ax^{n+1} < x^{n+2}$, since a < x and $0 < x^{n+1}$. Now the assertion of the lemma is trivial if n=0. Suppose that it holds for a non-negative integer n, and let $a_0, a_1, \dots, a_{n+1} \in R_0$. Then we have

$$\sum_{i=0}^{n+1} a_i x^i = \sum_{i=0}^n a_i x^i + a_{n+1} x^{n+1} < x^{n+1} + a_{n+1} x^{n+1} = (1 + a_{n+1}) x^{n+1} < x^{n+2}.$$

Corollary. Let K be a non-Archimedean totally ordered field containing a complete Archimedean subfield R_0 . Then each infinitely large element x of K is transcendential relative to R_0 .

Proof. Assume that $\sum_{i=0}^{n} a_i x^i = 0$ $(a_i \in R_0)$ implies $a_i = 0$ for every $i \in \{0, 1, \dots, n\}$. If $\sum_{i=0}^{n+1} a_i x^i = 0$ $(a_i \in R_0)$ and if $a_{n+1} \neq 0$, then we have $x^{n+1} = -\sum_{i=0}^{n} a_i a_{n+1}^{-1} x^i$, contrary to Lemma. Hence if $\sum_{i=0}^{n+1} a_i x^i = 0$ $(a_i \in R_0)$, then $a_{n+1} = 0$, and so $a_0 = a_1 = \cdots = a_n = 0$.

We shall now prove the following

Theorem 2. There exists a non-Archimedean totally ordered field K containing a complete Archimedean subfield R_0 such that K is not a nonstandard real field over any set.

Proof. Let x be an infinitely large element of a nonstandard real field *R over some set, and let R_0 be the subfield of all standard numbers of *R. R_0 is a complete Archimedean subfield of *R. Let us denote by K the smallest subfield of *R containing $R_0 \cup \{x\}$, and suppose that K is a nonstandard real field over a set I. Then K is isomorphic to some U-nonstandard real field for a δ -incomplete ultrafilter U on I. We identify K with this U-nonstandard real field. Let S be the set of all $t \in I$ with $x(t) \in R$, and let

$$a(t) = \begin{cases} \sqrt{x(t)} & \text{if } t \in S, \\ 0 & \text{if } t \notin S. \end{cases}$$

Then since $I, S \in U$ and $S \subset \{t \in I : a^2(t) = x(t)\}$, it follows that $a \in K$ and $a^2 = x$. Consequently we can find $a_0, \dots, a_m, b_0, \dots, b_n \in R_0$ with $a_m \neq 0$ and $b_n \neq 0$ such that

$$a = \left(\sum_{i=0}^{m} a_i x^i\right) \left(\sum_{i=0}^{n} b_i x^i\right)^{-1},$$

and hence

$$x\left(\sum_{i=0}^{n} b_{i}x^{i}\right)^{2} - \left(\sum_{i=0}^{m} a_{i}x^{i}\right)^{2} = 0,$$

where x^0 denotes the unit element 1 of K. Thus if 2n+1>2m, then by the above Corollary, we have a contradiction $b_n^2=0$; if $2n+1\leq 2m$, then since 2n+1<2m, the same Corollary yields a contradiction $a_m^2=0$. This completes the proof.