1. On the Degenerate Oblique Derivative Problems

By Akira Kaji

Department of Mathematics, University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1974)

§ 1. Introduction and results. In this note we give a priori estimates and existence theorems for the degenerate oblique derivative problems, which will be formulated below. We first reduce the given boundary value problems to the pseudo-differential equations on the boundary with the aid of suitable boundary value problems which are well studied, and next apply Melin's theorem (see [5], Theorem 3.1) to the pseudo-differential equations on the boundary.

Let Ω be a bounded domain in \mathbb{R}^n , and we assume that $\Omega \cup \partial \Omega$ is a C^{∞} -manifold with boundary. Let a(x), b(x) and c(x) be real-valued functions $\in C^{\infty}(\partial \Omega)$, **n** be the unit exterior normal to $\partial \Omega$ and $\boldsymbol{\nu}$ be a real C^{∞} -vector field on $\partial \Omega$.

Now we consider, for $\lambda > 0$, the degenerate oblique derivative problem:

(I)
$$\begin{cases} (\lambda - \Delta)u = f & \text{in } \Omega, \\ a(x)\frac{\partial u}{\partial n} + b(x)\frac{\partial u}{\partial \nu} + c(x)u = 0 & \text{on } \partial\Omega, \end{cases}$$

under the following assumptions:

(1) $a(x) \ge 0$.

(2) The set $S = \{x \in \partial \Omega ; a(x) = 0\}$ is an (n-2)-dimensional C^{∞} -manifold.

(3) $\boldsymbol{\nu}$ is transversal to S in $\partial \Omega$.

(4) c(x) > 0 on the set $\{x \in \partial \Omega : a(x) = 0\}$.

(5) Along the integral curve $x(t, x_0)$ of ν passing $x_0 \in S$ when $t=0, a(x(t, x_0))$ has a zero of finite order k at t=0, and $b(x(t, x_0))$ has a zero of finite order l at t=0, where k and l are independent of x_0 .

Remark 1. In the case where $b(x) \neq 0$ on S, our problem is the oblique derivative problem which has been already treated by several authors and we can remove the assumption (4) (see [2] and [6]). In the case where $b(x) \equiv 0$, our problem was treated by S. Itô (see [3]) and we can also remove the assumptions (2) and (5) (see the proof below).

For each real s, we denote by $H_s(\Omega)$ and $H_s(\partial\Omega)$ the usual Sobolev spaces on Ω and $\partial\Omega$ respectively, and by $\| \|_{s,\rho}$ and $\| \|_{s,\rho}$ norms in these spaces.

Theorem 1. Assume that $l \ge k$ and the assumptions (1), (2), (4) and (5) hold. Then there is a positive constant C such that, for $u \in L^2(\Omega)$

satisfying (I) with $f \in L^2(\Omega)$ we have

(1.1) $||u||_{2,g} \leq C(||f||_{0,g} + ||u||_{0,g}).$

Furthermore, if λ is sufficiently large, there is a unique solution $u \in H_2(\Omega)$ for every $f \in L^2(\Omega)$ and we can omit $||u||_{0,\varrho}$ in the right hand side of (1.1).

Theorem 2. Assume that l < k, l is even and that the assumptions (1), (2), (3), (4) and (5) hold. Then there is a positive constant C such that, for $u \in L^2(\Omega)$ satisfying (I) with $f \in L^2(\Omega)$ we have

(1.2)
$$||u||_{1+\delta, \varrho} \leq C(||f||_{0, \varrho} + ||u||_{0, \varrho}), \quad \text{where } \delta = \frac{1}{k-l+1}.$$

Furthermore, if λ is sufficiently large, there is a unique solution $u \in H_{1+\delta}(\Omega)$ for every $f \in L^2(\Omega)$, and we can omit $||u||_{0,\Omega}$ in the right hand side of (1.2).

§2. Sketch of proofs.

Proof of Theorem1. First we consider the following problem:

(II)
$$\begin{cases} (\lambda - \Delta)v = f & \text{in } \Omega, \\ \frac{\partial v}{\partial n} + \beta(x)\frac{\partial v}{\partial \nu} = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\beta(x) \equiv \frac{b(x)}{a(x)}$ is naturally extended over $\partial \Omega$ by the assumption

 $l \ge k$. For sufficiently large λ , there is a unique solution $v \in H_2(\Omega)$ satisfying (II) and

$$\|v\|_{2,a} \leq C \|f\|_{0,a}$$

where C is some positive constant. The function w=u-v satisfies

(III)
$$\begin{cases} (\lambda - \Delta)w = 0 & \text{in } \Omega, \\ a(x)\frac{\partial w}{\partial n} + b(x)\frac{\partial w}{\partial \nu} + c(x)w \mid_{\partial \Omega} = -c(x)v \mid_{\partial \Omega} \in H_{3/2}(\partial \Omega) \end{cases}$$

Recalling the fact that if we define π_{λ} by $\pi_{\lambda}\varphi = \frac{\partial g}{\partial \boldsymbol{n}}\Big|_{\boldsymbol{\sigma},\boldsymbol{\Omega}}$ for $g \in L^{2}(\Omega)$ satis-

fying

(IV)
$$\begin{cases} (\lambda - \Delta)g = 0 \quad \text{in } \Omega, \\ g|_{\partial \Omega} = \varphi \in H_{-1/2}(\partial \Omega), \end{cases}$$

then π_{λ} is a first order elliptic pseudo-differential operator on $\partial \Omega$, we can reduce the problem (III) to the following equation.

(V)
$$T_{\lambda}w^{0} \equiv a(x)\pi_{\lambda}w^{0} + b(x)\frac{\partial w^{0}}{\partial \boldsymbol{\nu}} + c(x)w^{0} = -c(x)v^{0}$$

where $w^0 = w|_{\partial \Omega}$. We now apply Melin's theorem to the operator $\Lambda^3 T_{\lambda}$, where $\Lambda = (1 - \Delta')^{1/2}$ and Δ' is the Laplace-Beltrami operator on $\partial \Omega$. Since a(x) vanishes at least with second order by (1), we can prove that Melin's conditions are satisfied for the operator $\Lambda^3 T_{\lambda}$. Hence we have

$$\operatorname{Re}\left(\varLambda^{3}T_{\lambda}\phi,\phi\right) \geq c_{1} \|\phi\|_{3/2,\,\delta,\mathcal{G}}^{2} - c_{2} \|\phi\|_{t,\,\delta,\mathcal{G}}^{2} \qquad \text{for any } \phi \in C^{\infty}(\partial \mathcal{Q})$$

No. 1]

where c_1 and c_2 are positive constants and t < 3/2. On the other hand we have

 $\operatorname{Re}\left(\Lambda^{3}T_{\lambda}\phi,\phi\right) \leq c_{3} \|T_{\lambda}\phi\|_{3/2,\partial \mathcal{Q}} \|\phi\|_{3/2,\partial \mathcal{Q}} \quad \text{for any } \phi \in C^{\infty}(\partial \mathcal{Q}).$ Therefore

$$\begin{split} \|\phi\|_{3/2,\partial_{\Omega}} &\leq c(\|T_{\lambda}\phi\|_{3/2,\partial_{\Omega}} + \|\phi\|_{t,\partial_{\Omega}}) \\ \text{for a suitable constant } c. \quad \text{Hence we obtain } w^{0} \in H_{3/2}(\partial\Omega) \text{ and} \\ (2.2) \qquad & \|w^{0}\|_{3/2,\partial_{\Omega}} \leq c(\|T_{\lambda}w^{0}\|_{3/2,\partial_{\Omega}} + \|w^{0}\|_{t,\partial_{\Omega}}). \\ \text{Since } w \text{ satisfies (IV) with } \varphi \text{ replaced by } w^{0} \in H_{3/2}(\partial\Omega), \text{ we have} \\ (2.3) \qquad & \|w\|_{2,\Omega} \leq c \|w^{0}\|_{3/2,\partial\Omega}. \\ \text{Hence, from (2.1), (2.2), (2.3) and } u = v + w, \text{ we obtain} \end{split}$$

 $||u||_{2,\varrho} \leq c(||f||_{0,\varrho} + ||u||_{0,\varrho}).$

We define the map $\mathcal{T}_{\lambda}: \mathcal{D}(\mathcal{T}_{\lambda}) \equiv \{\varphi \in H_{3/2}(\partial \Omega); T_{\lambda}\varphi \in H_{3/2}(\partial \Omega)\} \rightarrow H_{3/2}(\partial \Omega)$ by $\mathcal{T}_{\lambda}\varphi = T_{\lambda}\varphi$ for $\varphi \in \mathcal{D}(\mathcal{T}_{\lambda})$. Then the existence and the uniqueness of solution of the problem (I) are derived from those of the problem $\mathcal{T}_{\lambda}\varphi$ $= \psi$. We apply Agmon's technique, that is, increasing the number of independent variables (see [1]), we obtain for large λ

$$\|u\|_{0,\mathfrak{a}} \leq \frac{c}{\lambda} \|(\lambda - \Delta)u\|_{0,\mathfrak{a}}$$

for any u satisfying the boundary condition of (I). Hence the map \mathcal{I}_{λ} must be one-to-one.

Next we consider

(2.4)
$$\begin{cases} (\lambda - \Delta)u = f & \text{in } \Omega, \\ a(x) \frac{\partial u}{\partial n} + \left(b(x) \frac{\partial}{\partial y} \right)^* u + c(x)u + \left((a(x)\pi_{\mu})^* - a(x)\pi_{\mu} \right) u \mid_{\partial \Omega} = 0, \end{cases}$$

where $\mu \ge 1$, and $P^*(x, D)$ denotes the formal adjoint of the pseudodifferential operator P(x, D).

Considering the problem:

$$\begin{cases} (\lambda - \Delta)v = f & \text{in } \Omega_{\gamma} \\ \frac{\partial v}{\partial n} - \beta(x) \frac{\partial v}{\partial \nu} \Big|_{\sigma \Omega} = 0, \end{cases}$$

and setting u = v + w, we obtain the following pseudo-differential equation (2.5) on the boundary corresponding to (V):

(2.5)
$$a(x)\pi_{\lambda}w^{0} + \left(b(x)\frac{\partial}{\partial y}\right)^{*}w^{0} + c(x)w^{0} + \left((a(x)\pi_{\mu})^{*} - a(x)\pi_{\mu}\right)w^{0} = g$$

where

$$g = -\left\{ \left(b(x) \frac{\partial}{\partial \boldsymbol{\nu}} + \left(b(x) \frac{\partial}{\partial \boldsymbol{\nu}} \right)^* \right) v^0 + c(x) v^0 + \left((a(x)\pi_{\boldsymbol{\mu}})^* - a(x)\pi_{\boldsymbol{\mu}} \right) v^0 \right\}.$$

We note that the left hand side of (2.5) equals T_{λ}^{*} when $\mu = \lambda$. It follows from the calculus for the pseudo-differential operators with parameter that there is a positive constant c_{s} independent of μ such that

 $\|((a(x)\pi_{\mu})^*-a(x)\pi_{\mu})\varphi\|_{s,\partial\Omega} \leq c_s \|\varphi\|_{s,\partial\Omega}$ for any $\varphi \in H_s(\partial\Omega)$. Hence, by the same argument as above, we find a positive constant c independent of μ such that A. Kaji

$$\|u\|_{0,\mathfrak{g}} \leq \frac{c}{\lambda} \|(\lambda - \Delta)u\|_{0,\mathfrak{g}}$$

for any *u* satisfying (2.4) and for large λ . We define the map $\mathcal{I}_{1,\lambda}^*$: $\mathcal{D}(\mathcal{I}_{1,\lambda}^*) \equiv \{\varphi \in H_{-3/2}(\partial \Omega); T_{\lambda}^*\varphi \in H_{-3/2}(\partial \Omega)\} \rightarrow H_{-3/2}(\partial \Omega)$ by $\mathcal{I}_{1,\lambda}^*\varphi = T_{\lambda}^*\varphi$ for $\varphi \in \mathcal{D}(\mathcal{I}_{1,\lambda}^*)$. Then $\mathcal{I}_{1,\lambda}^*$ is one-to-one. If we denote by $\widetilde{\mathcal{I}}_{\lambda}^*$ the adjoint of \mathcal{I}_{λ} with respect to the pairing of $H_{3/2}(\partial \Omega)$ and $H_{-3/2}(\partial \Omega)$, then $\mathcal{I}_{1,\lambda}^* \supset \widetilde{\mathcal{I}}_{\lambda}^*$. Hence \mathcal{I}_{λ} is onto for large λ since \mathcal{I}_{λ} has a closed range which consists with the orthogonal complement of the null space of $\widetilde{\mathcal{I}}_{\lambda}^*$. Theorem 1 is thus proved.

Proof of Theorem 2. Considering (II)' below in place of (II), one can prove Theorem 2 by the same argument as the proof of Theorem 1:

(II)'
$$\begin{cases} (\lambda - d)v = f & \text{in } \Omega, \\ \alpha(x)\frac{\partial v}{\partial n} + \frac{\partial v}{\partial y} \Big|_{\partial \Omega} = 0, \end{cases}$$

where $\alpha(x) \equiv \frac{a(x)}{b(x)}$ is naturally extended over $\partial \Omega$ by the assumption

l < k. This oblique derivative problem has a unique solution $v \in H_{1+\delta}(\Omega)$ for large λ (see [4]).

Remark 2. For $s \ge 1$, by considering $\Lambda^{2s+3}T_{\lambda}$ in place of $\Lambda^{3}T_{\lambda}$, one can easily obtain a *priori* estimates

 $||u||_{s+2,\rho} \leq c(||f||_{s,\rho} + ||u||_{0,\rho})$ in place of (1.1)

and

$$||u||_{s+1+\delta, \mathcal{Q}} \leq c(||f||_{s,\mathcal{Q}} + ||u||_{0,\mathcal{Q}})$$
 in place of (1.2).

If we define \mathcal{A} on $\mathcal{D}(\mathcal{A}) \equiv \left\{ u \in L^2(\Omega) ; (\lambda_0 - \mathcal{A})u \in L^2(\Omega), a(x) \frac{\partial u}{\partial n} \right\}$

 $+b(x)\frac{\partial u}{\partial \mathbf{\nu}}+c(x)u|_{\partial g}=0$ by $\mathcal{A}u=-(\lambda_0-\mathcal{A})u$ for $u\in\mathcal{D}(\mathcal{A})$, then by the

same argument as the proofs of Theorems 1 and 2 one can prove that

Theorem 3. The spectrum of \mathcal{A} is discrete and the eigenvalues of \mathcal{A} have finite multiplicity. Moreover $\lambda = re^{i\theta}$ $(0 \leq \theta < 2\pi, \theta \neq \pi)$ is contained in the resolvent set of \mathcal{A} if r is sufficiently large.

Remark 3. In all the Theorems stated above one can replace Δ by $\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{n} b_j(x) \frac{\partial}{\partial x_j} + d(x)$ where $a_{ij}(x), b_j(x)$ and d(x) are functions $\in C^{\infty}(\overline{\Omega})$ and $a_{ij}(x)$'s are real-valued functions satisfying $\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge c |\xi|^2$ with some constant C > 0.

References

 S. Agmon: Lectures on Elliptic Boundary Value Problems. Van-Nostrand Mathematical Studies (1965).

- [2] Ju. V. Egorov and V. A. Kondrat'ev: The oblique derivative problem. Math. USSR Sbornik, 7, 139-169 (1969).
- [3] S. Itô: Fundamental solutions of parabolic differential equations and boundary value problems. Jap. J. Math., 27, 55-102 (1957).
- [4] A. Kaji: On the Non-Coercive Boundary Value Problems. Master thesis University of Tokyo (1973) (in Japanese).
- [5] A. Melin: Lower bounds for pseudo-differential operators. Ark. för Mat., 9, 117-140 (1971).
- [6] K. Taira: On the oblique derivative problems. Sûrikaiseki-kenkyûsyo Kôkyû-roku, 186, 33-46 (1973) (in Japanese).