1. On the Degenerate Oblique Derivative Problems

By Akira KajI
Department of Mathematics, University of Tokyo
(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1974)

§ 1. Introduction and results. In this note we give a priori estimates and existence theorems for the degenerate oblique derivative problems, which will be formulated below. We first reduce the given boundary value problems to the pseudo-differential equations on the boundary with the aid of suitable boundary value problems which are well studied, and next apply Melin's theorem (see [5], Theorem 3.1) to the pseudo-differential equations on the boundary.

Let Ω be a bounded domain in R^{n}, and we assume that $\Omega \cup \partial \Omega$ is a C^{∞}-manifold with boundary. Let $a(x), b(x)$ and $c(x)$ be real-valued functions $\in C^{\infty}(\partial \Omega), \boldsymbol{n}$ be the unit exterior normal to $\partial \Omega$ and ν be a real C^{∞}-vector field on $\partial \Omega$.

Now we consider, for $\lambda>0$, the degenerate oblique derivative problem:

$$
\left\{\begin{array}{l}
(\lambda-\Delta) u=f \quad \text { in } \Omega \tag{I}\\
a(x) \frac{\partial u}{\partial \boldsymbol{n}}+b(x) \frac{\partial u}{\partial \nu}+c(x) u=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

under the following assumptions:
(1) $a(x) \geqq 0$.
(2) The set $S=\{x \in \partial \Omega ; a(x)=0\}$ is an ($n-2$)-dimensional C^{∞} manifold.
(3) ν is transversal to S in $\partial \Omega$.
(4) $c(x)>0$ on the set $\{x \in \partial \Omega: a(x)=0\}$.
(5) Along the integral curve $x\left(t, x_{0}\right)$ of ν passing $x_{0} \in S$ when $t=0, a\left(x\left(t, x_{0}\right)\right)$ has a zero of finite order k at $t=0$, and $b\left(x\left(t, x_{0}\right)\right)$ has a zero of finite order l at $t=0$, where k and l are independent of x_{0}.

Remark 1. In the case where $b(x) \neq 0$ on S, our problem is the oblique derivative problem which has been already treated by several authors and we can remove the assumption (4) (see [2] and [6]). In the case where $b(x) \equiv 0$, our problem was treated by S. Itô (see [3]) and we can also remove the assumptions (2) and (5) (see the proof below).

For each real s, we denote by $H_{s}(\Omega)$ and $H_{s}(\partial \Omega)$ the usual Sobolev spaces on Ω and $\partial \Omega$ respectively, and by $\left\|\|_{s, \Omega}\right.$ and $\| \|_{s, \partial \Omega}$ norms in these spaces.

Theorem 1. Assume that $l \geqq k$ and the assumptions (1), (2), (4) and (5) hold. Then there is a positive constant C such that, for $u \in L^{2}(\Omega)$
satisfying (I) with $f \in L^{2}(\Omega)$ we have
(1.1)

$$
\|u\|_{2, \Omega} \leqq C\left(\|f\|_{0, \Omega}+\|u\|_{0, \Omega}\right) .
$$

Furthermore, if λ is sufficiently large, there is a unique solution $u \in H_{2}(\Omega)$ for every $f \in L^{2}(\Omega)$ and we can omit $\|u\|_{0, \Omega}$ in the right hand side of (1.1).

Theorem 2. Assume that $l<k$, lis even and that the assumptions (1), (2), (3), (4) and (5) hold. Then there is a positive constant C such that, for $u \in L^{2}(\Omega)$ satisfying (I) with $f \in L^{2}(\Omega)$ we have

$$
\begin{equation*}
\|u\|_{1+\delta, \Omega} \leqq C\left(\|f\|_{0, a}+\|u\|_{0, a}\right), \quad \text { where } \delta=\frac{1}{k-l+1} \tag{1.2}
\end{equation*}
$$

Furthermore, if λ is sufficiently large, there is a unique solution $u \in H_{1+\delta}(\Omega)$ for every $f \in L^{2}(\Omega)$, and we can omit $\|u\|_{0, \Omega}$ in the right hand side of (1.2).

§ 2. Sketch of proofs.

Proof of Theorem1. First we consider the following problem:

$$
\left\{\begin{array}{l}
(\lambda-\Delta) v=f \quad \text { in } \Omega, \tag{II}\\
\frac{\partial v}{\partial \boldsymbol{n}}+\beta(x) \frac{\partial v}{\partial \nu}=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

where $\beta(x) \equiv \frac{b(x)}{a(x)}$ is naturally extended over $\partial \Omega$ by the assumption
$l \geqq k$. For sufficiently large λ, there is a unique solution $v \in H_{2}(\Omega)$ satisfying (II) and

$$
\begin{equation*}
\|v\|_{2, a} \leqq C\|f\|_{0, a} \tag{2.1}
\end{equation*}
$$

where C is some positive constant.
The function $w=u-v$ satisfies

$$
\left\{\begin{array}{l}
(\lambda-\Delta) w=0 \quad \text { in } \Omega \tag{III}\\
a(x) \frac{\partial w}{\partial \boldsymbol{n}}+b(x) \frac{\partial w}{\partial \nu}+\left.c(x) w\right|_{\partial \Omega}=-\left.c(x) v\right|_{\partial \Omega} \in H_{3 / 2}(\partial \Omega) .
\end{array}\right.
$$

Recalling the fact that if we define π_{λ} by $\pi_{\lambda} \varphi=\left.\frac{\partial g}{\partial \boldsymbol{n}}\right|_{\partial \Omega}$ for $g \in L^{2}(\Omega)$ satisfying

$$
\left\{\begin{align*}
(\lambda-\Delta) g & =0 \quad \text { in } \Omega, \tag{IV}\\
\left.g\right|_{\partial \Omega} & =\varphi \in H_{-1 / 2}(\partial \Omega),
\end{align*}\right.
$$

then π_{λ} is a first order elliptic pseudo-differential operator on $\partial \Omega$, we can reduce the problem (III) to the following equation.

$$
\begin{equation*}
T_{\lambda} w^{0} \equiv a(x) \pi_{\lambda} w^{0}+b(x) \frac{\partial w^{0}}{\partial \nu}+c(x) w^{0}=-c(x) v^{0} \tag{V}
\end{equation*}
$$

where $w^{0}=\left.w\right|_{\partial \Omega}$. We now apply Melin's theorem to the operator $\Lambda^{3} T_{\lambda}$, where $\Lambda=\left(1-\Delta^{\prime}\right)^{1 / 2}$ and Δ^{\prime} is the Laplace-Beltrami operator on $\partial \Omega$. Since $\alpha(x)$ vanishes at least with second order by (1), we can prove that Melin's conditions are satisfied for the operator $\Lambda^{3} T_{\lambda}$. Hence we have

$$
\operatorname{Re}\left(\Lambda^{3} T_{\lambda} \phi, \phi\right) \geqq c_{1}\|\phi\|_{3 / 2, \partial \Omega}^{2}-c_{2}\|\phi\|_{t, \partial \Omega}^{2} \quad \text { for any } \phi \in C^{\infty}(\partial \Omega)
$$

where c_{1} and c_{2} are positive constants and $t<3 / 2$. On the other hand we have

$$
\operatorname{Re}\left(\Lambda^{3} T_{\lambda} \phi, \phi\right) \leqq c_{3}\left\|T_{\lambda} \phi\right\|_{3 / 2,0 \Omega}\|\phi\|_{3 / 2,0 \Omega} \quad \text { for any } \phi \in C^{\infty}(\partial \Omega) .
$$

Therefore

$$
\|\phi\|_{3 / 2, a \Omega} \leqq c\left(\left\|T_{i} \phi\right\|_{3 / 2, a \Omega}+\|\phi\|_{l, 0 \Omega}\right)
$$

for a suitable constant c. Hence we obtain $w^{0} \in H_{3 / 2}(\partial \Omega)$ and

$$
\begin{equation*}
\left\|w^{0}\right\|_{3 /, 2 \Omega} \leqq c\left(\left\|T_{\lambda} w^{0}\right\|_{\|_{3 / 2, a \Omega}}+\left\|w^{0}\right\|_{t, 0, \Omega}\right) . \tag{2.2}
\end{equation*}
$$

Since w satisfies (IV) with φ replaced by $w^{0} \in H_{3 / 2}(\partial \Omega)$, we have (2.3) $\quad\|w\|_{2, \Omega} \leqq c\left\|w^{0}\right\|_{3 / 2, a \Omega}$.

Hence, from (2.1), (2.2), (2.3) and $u=v+w$, we obtain

$$
\|u\|_{2, \Omega} \leqq c\left(\|f\|_{0,2}+\|u\|_{0, \Omega}\right) .
$$

We define the map $\mathscr{I}_{\lambda}: \mathscr{D}\left(\mathscr{I}_{\lambda}\right) \equiv\left\{\varphi \in H_{3 / 2}(\partial \Omega) ; T_{\lambda} \varphi \in H_{3 / 2}(\partial \Omega)\right\} \rightarrow H_{3 / 2}(\partial \Omega)$ by $\mathscr{I}_{\lambda} \varphi=T_{\lambda} \varphi$ for $\varphi \in \mathscr{D}\left(\mathscr{I}_{\lambda}\right)$. Then the existence and the uniqueness of solution of the problem (I) are derived from those of the problem $\mathscr{I}_{\lambda} \varphi$ $=\psi$. We apply Agmon's technique, that is, increasing the number of independent variables (see [1]), we obtain for large λ

$$
\|u\|_{0, \Omega} \leqq \frac{c}{\lambda}\|(\lambda-\Delta) u\|_{0, a}
$$

for any u satisfying the boundary condition of (I). Hence the map \mathscr{I}_{2} must be one-to-one.

Next we consider

$$
\left\{\begin{array}{l}
(\lambda-\Delta) u=f \quad \text { in } \Omega, \tag{2.4}\\
a(x) \frac{\partial u}{\partial \boldsymbol{n}}+\left(b(x) \frac{\partial}{\partial \nu}\right)^{*} u+c(x) u+\left.\left(\left(a(x) \pi_{\mu}\right)^{*}-a(x) \pi_{\mu}\right) u\right|_{\partial, \Omega}=0,
\end{array}\right.
$$

where $\mu \geqq 1$, and $P^{*}(x, D)$ denotes the formal adjoint of the pseudodifferential operator $P(x, D)$.
Considering the problem:

$$
\left\{\begin{array}{l}
(\lambda-\Delta) v=f \quad \text { in } \Omega, \\
\frac{\partial v}{\partial \boldsymbol{n}}-\left.\beta(x) \frac{\partial v}{\partial \nu}\right|_{\partial \Omega}=0,
\end{array}\right.
$$

and setting $u=v+w$, we obtain the following pseudo-differential equation (2.5) on the boundary corresponding to (V):

$$
\begin{equation*}
a(x) \pi_{2} w^{0}+\left(b(x) \frac{\partial}{\partial \nu}\right)^{*} w^{0}+c(x) w^{0}+\left(\left(a(x) \pi_{\mu}\right)^{*}-a(x) \pi_{\mu}\right) w^{0}=g \tag{2.5}
\end{equation*}
$$

where

$$
g=-\left\{\left(b(x) \frac{\partial}{\partial \nu}+\left(b(x) \frac{\partial}{\partial \nu}\right)^{*}\right) v^{0}+c(x) v^{0}+\left(\left(a(x) \pi_{\mu}\right)^{*}-a(x) \pi_{\mu}\right) v^{0}\right\} .
$$

We note that the left hand side of (2.5) equals T_{λ}^{*} when $\mu=\lambda$. It follows from the calculus for the pseudo-differential operators with parameter that there is a positive constant c_{s} independent of μ such that

$$
\left\|\left(\left(a(x) \pi_{\mu}\right)^{*}-a(x) \pi_{\mu}\right) \varphi\right\|_{s, a \Omega} \leqq c_{s}\|\varphi\|_{s, \Omega \Omega} \quad \text { for any } \varphi \in H_{s}(\partial \Omega) .
$$

Hence, by the same argument as above, we find a positive constant c independent of μ such that

$$
\|u\|_{0, \Omega} \leqq \frac{c}{\lambda}\|(\lambda-\Delta) u\|_{0, \Omega}
$$

for any u satisfying (2.4) and for large λ. We define the map $\mathscr{I}_{1,2}^{*}$: $\mathscr{D}\left(\mathscr{I}_{1,2}^{*}\right) \equiv\left\{\varphi \in H_{-3 / 2}(\partial \Omega) ; T_{\lambda}^{*} \varphi \in H_{-3 / 2}(\partial \Omega)\right\} \rightarrow H_{-3 / 2}(\partial \Omega)$ by $\mathscr{I}_{1, \lambda}^{*} \varphi=T_{\lambda}^{*} \varphi$ for φ $\in \mathscr{D}\left(\mathscr{I}_{1,2}^{*}\right)$. Then $\mathscr{I}_{1,2}^{*}$ is one-to-one. If we denote by $\widetilde{\mathscr{T}}_{\lambda}^{*}$ the adjoint of \mathscr{I}_{λ} with respect to the pairing of $H_{3 / 2}(\partial \Omega)$ and $H_{-3 / 2}(\partial \Omega)$, then $\mathscr{I}_{1,2}^{*} \supset \widetilde{\mathscr{I}}_{\lambda}^{*}$. Hence \mathscr{I}_{λ} is onto for large λ since \mathscr{I}_{λ} has a closed range which consists with the orthogonal complement of the null space of $\widetilde{\mathscr{I}}_{2}^{*}$. Theorem 1 is thus proved.

Proof of Theorem 2. Considering (II)' below in place of (II), one can prove Theorem 2 by the same argument as the proof of Theorem 1:

$$
\left\{\begin{array}{l}
(\lambda-\Delta) v=f \quad \text { in } \Omega, \tag{II}\\
\alpha(x) \frac{\partial v}{\partial \boldsymbol{n}}+\left.\frac{\partial v}{\partial \nu}\right|_{\partial \Omega}=0,
\end{array}\right.
$$

where $\alpha(x) \equiv \frac{a(x)}{b(x)}$ is naturally extended over $\partial \Omega$ by the assumption $l<k$. This oblique derivative problem has a unique solution $v \in H_{1+\delta}(\Omega)$ for large λ (see [4]).

Remark 2. For $s \geqq 1$, by considering $\Lambda^{2 s+3} T_{\lambda}$ in place of $\Lambda^{3} T_{\lambda}$, one can easily obtain a priori estimates

$$
\|u\|_{s+2, \Omega} \leqq c\left(\|f\|_{s, \Omega}+\|u\|_{0, \Omega}\right) \quad \text { in place of (1.1) }
$$

and

$$
\|u\|_{s+1+\delta, \Omega} \leqq c\left(\|f\|_{s, \Omega}+\|u\|_{0, \Omega}\right) \quad \text { in place of (1.2). }
$$

If we define \mathcal{A} on $\mathscr{D}(\mathcal{A}) \equiv\left\{u \in L^{2}(\Omega) ;\left(\lambda_{0}-\Delta\right) u \in L^{2}(\Omega), a(x) \frac{\partial u}{\partial \boldsymbol{n}}\right.$ $\left.+b(x) \frac{\partial u}{\partial \nu}+\left.c(x) u\right|_{\partial \Omega}=0\right\}$ by $\mathcal{A} u=-\left(\lambda_{0}-\Delta\right) u$ for $u \in \mathscr{D}(\mathcal{A})$, then by the same argument as the proofs of Theorems 1 and 2 one can prove that

Theorem 3. The spectrum of \mathcal{A} is discrete and the eigenvalues of \mathcal{A} have finite multiplicity. Moreover $\lambda=r e^{i \theta}(0 \leqq \theta<2 \pi, \theta \neq \pi)$ is contained in the resolvent set of \mathcal{A} if r is sufficiently large.

Remark 3. In all the Theorems stated above one can replace Δ by $\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{n} b_{j}(x) \frac{\partial}{\partial x_{j}}+d(x)$ where $a_{i j}(x), b_{j}(x)$ and $d(x)$ are functions $\in C^{\infty}(\bar{\Omega})$ and $\alpha_{i j}(x)$'s are real-valued functions satisfying $\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geqq c|\xi|^{2}$ with some constant $C>0$.

References

[1] S. Agmon: Lectures on Elliptic Boundary Value Problems. Van-Nostrand Mathematical Studies (1965).
[2] Ju. V. Egorov and V. A. Kondrat'ev: The oblique derivative problem. Math. USSR Sbornik, 7, 139-169 (1969).
[3] S. Itô: Fundamental solutions of parabolic differential equations and boundary value problems. Jap. J. Math., 27, 55-102 (1957).
[4] A. Kaji: On the Non-Coercive Boundary Value Problems. Master thesis University of Tokyo (1973) (in Japanese).
[5] A. Melin: Lower bounds for pseudo-differential operators. Ark. för Mat., 9, 117-140 (1971).
[6] K. Taira: On the oblique derivative problems. Sûrikaiseki-kenkyûsyo Kôkyû-roku, 186, 33-46 (1973) (in Japanese).

