42. Symmetric Spaces Associated with Siegel Domains

By Kazufumi NAKAJIMA
Department of Mathematics, Kyoto University
(Comm. by Kôsaku Yosida, M. J. A., March 12, 1974)

Introduction. Let D be a Siegel domain of the second kind due to Pyatetski-Shapiro [2]. We then construct a symmetric Siegel domain in \overline{D} which is invariant under a suitable equivalence. At the same time we establish a structure theorem of the Lie algebra of all infinitesimal automorphisms of the domain D.

1. Let $g = \sum_{p} g^{p}$ $(p \in \mathbb{Z}, [g^{p}, g^{q}] \subset g^{p+q})$ be a graded Lie algebra over \mathbb{R} with dim $g < \infty$. Then the radical x of g is a graded ideal. Concerning Levi decompositions of g, we obtain

Theorem 1. There exists a semi-simple graded subalgebra \hat{s} of g such that $g = \hat{s} + r$.

2. Denote by R (resp. by W) a real (resp. complex) vector space of a finite dimension, and by R_c the complexification of R. Let D be a Siegel domain of the second kind in $R_c \times W$ associated with a convex cone V in R and a V-hermitian form F on W. We denote by $\mathfrak{g}(D)$ the Lie algebra of all infinitesimal automorphisms of D. Kaup, Matsushima and Ochiai [1] showed that the Lie algebra $\mathfrak{g}(D)$ has the following graded structure:

$$g(D) = g^{-2} + g^{-1} + g^0 + g^1 + g^2 \qquad ([g^p, g^q] \subset g^{p+q}),$$

$$x = x^{-2} + x^{-1} + x^0 \qquad (x^p = x \cap g^p),$$

where \mathfrak{r} denotes the radical of $\mathfrak{g}(D)$. By using Theorem 1 we have

Theorem 2. There exists a semi-simple graded subalgebra $\mathcal{Z} = \sum_{p=-2}^{2} \mathcal{Z}^{p}$ of $\mathfrak{g}(D)$ such that

- (1) $\mathfrak{S}^1 = \mathfrak{S}^1 \text{ and } \mathfrak{S}^2 = \mathfrak{g}^2$,
- (2) For any $X \in \mathcal{Z}^0$, the condition " $[X, \mathcal{Z}^1 + \mathcal{Z}^2] = 0$ " implies X = 0.

Let $\mathfrak S$ be as in Theorem 2. Since $\mathfrak S$ is semi-simple, there exists a unique element E_s of $\mathfrak S^0$ such that

$$[E_s, X] = pX$$
 for $X \in \mathfrak{S}^p$.

We set

$$\begin{split} & \mathfrak{r}_0^{-2} \!=\! \{X \in r^{-2}\,;\, [\mathbb{S},X] \!=\! 0\}, \\ & \mathfrak{r}_s^{-2} \!=\! \{X \in r^{-2}\,;\, [E_s,X] \!=\! -X\}, \\ & \mathfrak{r}_0^0 \!=\! \{X \in r^0\,;\, [\mathbb{S},X] \!=\! 0\}, \\ & \mathfrak{r}_s^0 \!=\! \{X \in r^0\,;\, [E_s,X] \!=\! X\}. \end{split}$$

In the notations as above, we have the following

Theorem 3. The radical x has the following structure:

(1)
$$\mathfrak{r}^{-2} = \mathfrak{r}_0^{-2} + \mathfrak{r}_s^{-2}$$
 (direct sum), $\mathfrak{r}_0^{-2} \supset [\mathfrak{r}^{-1}, \mathfrak{r}^{-1}]$,

$$\mathfrak{r}^0 = \mathfrak{r}^0_0 + \mathfrak{r}^0_s$$
 (direct sum).

- (2) $r_s^{-2} = [r^{-2}, \hat{s}^0] = [r^0, \hat{s}^{-2}] \supset [r^{-1}, \hat{s}^{-1}],$ $r_s^0 = [r^0, \hat{s}^0] = [r^{-2}, \hat{s}^2] \supset [r^{-1}, \hat{s}^1],$ $\dim r_s^{-2} = \dim r_s^0.$
- (3) ad $E_s = 0$ on r^{-1} .
- (4) r_s^0 is an abelian ideal of g^0 satisfying the followings:
 - a) $[r_s^0, r^{-1} + r_0^{-2}] = 0$,
 - b) $[\mathfrak{r}_s^0, \mathfrak{r}_s^{-2}] \subset \mathfrak{r}_0^{-2}$.
- 3. Let \hat{s} be as in Theorem 2. Then we can see

(*)
$$\begin{cases} \mathfrak{g}^{-2} = \mathfrak{S}^{-2} + \mathfrak{r}^{-2} \text{ (direct sum),} \\ \mathfrak{g}^{-1} = \mathfrak{S}^{-1} + \mathfrak{r}^{-1} \text{ (direct sum).} \end{cases}$$

It is well known that the space g^{-2} (resp. g^{-1}) can be identified with the space R (resp. W). Then the subspace \mathfrak{F}^{-1} is a complex subspace. Denote by η_s the projection of $\mathfrak{g}_c^{-2}+\mathfrak{g}^{-1}$ ($=R_c\times W$) onto $\mathfrak{F}_c^{-2}+\mathfrak{F}^{-1}$ corresponding to the decompositions (*). And put $V_s=\eta_s(V)$. Then V_s is a convex cone in \mathfrak{F}^{-2} and the restriction F_s of F to \mathfrak{F}^{-1} is a V_s -hermitian form on \mathfrak{F}^{-1} . Let S be the Siegel domain of the second kind in $\mathfrak{F}_c^{-2}+\mathfrak{F}^{-1}$ associated with V_s and F_s .

Proposition 4. The projection η_s maps D onto S.

We can also prove

Theorem 5. The Siegel domain S is a symmetric homogeneous domain and \tilde{s} may be identified with g(S).

From the construction, we can see that S is contained in \overline{D} . Moreover we have

Proposition 6. If x=0, then S=D. And if $x\neq 0$, then S is contained in the boundary of D.

Proposition 4 gives a "fibering" of D. We have the following

Theorem 7. Let $a, b \in S$. Then the fibers $\eta_s^{-1}(a)$ and η_s^{-1} are holomorphically equivalent to each other. Moreover every fiber is holomorphically equivalent to a bounded domain.

The domain S is constructed from the subalgebra \hat{s} . The following theorem implies the uniqueness of such domains.

Theorem 8. Let \mathfrak{F}' be another semi-simple graded subalgebra as in Theorem 2 and let \mathfrak{F}' be the corresponding symmetric domain. Then there exists $X \in \mathfrak{g}^0$ such that

$$Ad(\exp X)$$
\$=\$\exists', \exp X(S)=S' and \exp X\cdot\eta_s=\eta_{s'}\cdot\exp X.

Proof of Theorem 8 uses Theorem 3.

4. We now consider domains over classical cones. Denote by $H^+(m, \mathbf{R})$ (resp. by $H^+(m, \mathbf{C})$) the set of all positive definite real symmetric (resp. complex hermitian) matrices of degree m. And denote by $H^+(m, \mathbf{K})$ the set $\{X \in H^+(2m, \mathbf{C}); JX = \overline{X}J\}$, where

$$J = \begin{pmatrix} j & 0 \\ j & \\ & \ddots & \\ 0 & j \end{pmatrix}, \qquad j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

The sets $H^+(m, \mathbf{R})$, $H^+(m, \mathbf{C})$ and $H^+(m, \mathbf{K})$ are irreducible cones.

Proposition 9. Let D be a Siegel domain over a cone stated above. Suppose $g^{-2} \neq [g^{-1}, g^{-1}]$. Then $g^1 = 0$.

Furthermore we can find the associated symmetric domain S for any homogeneous Siegel domain constructed in [2] over these cones. In particular we can calculate dim \mathfrak{g}^1 and dim \mathfrak{g}^2 . The results are as follows.

(i) The case $V=H^+(m,\mathbf{R})$ $(m\geq 2)$. Let r(t) be an N-valued non-decreasing function on the interval [1,s] $(s\in N)$ such that $r(s)\leq m$. Denote by $M(p,q,\mathbf{C})$ the vector space of all $p\times q$ complex matrices, and put $W=\{(u_{kt})\in M(m,s,\mathbf{C}) ; u_{kt}=0 \text{ for } k>r(t)\}$. Define a V-hermitian form F on W by $F(u,v)=1/2(u^{t}\overline{v}+\overline{v}^{t}u)$.

Theorem 10. Let D be a Siegel domain associated with V and F and let n=r(s). Then $\dim \mathfrak{g}^1=0$, $\dim \mathfrak{g}^2=1/2(m-n)$ (m-n+1) and S is the Siegel domain of the first kind associated with the cone $H^+(m-n,\mathbf{R})$.

(ii) The case $V=H^+(m,C)$ $(m\geq 2)$. Let $r_h(t)$ be a function on $[1,s_h]$ as in (i) (h=1,2). And let W_h be the complex vector space corresponding to $r_h(t)$. We set $W=W_1\times W_2$ and define a V-hermitian form F on W by $F(u,v)=u_1^t\overline{v}_1+\overline{v}_2^tu_2$, where $u=(u_1,u_2)$ and $v=(v_1,v_2)$. For the domain corresponding to V and F, we have

Theorem 11. Assume $r_1(s_1) \ge r_2(s_2)$.

- (1) If $r_2(s_2) = m$. Then dim $g^1 = \dim g^2 = 0$ and S = (0).
- (2) If $r_1(s_1) < m$. Then dim $g^1 = 0$, dim $g^2 = (m r_1(s_1))^2$ and S is of the first kind associated with $H^+(m r_1(s_1), \mathbb{C})$.
- (3) If $r_1(s_1) = m$ and $r_2(s_2) < m$. Let s_1' be the integer $(s_1' < s_1)$ such that $r_1(s_1') < r_1(s_1' + 1) = m$. (In the case $r_1(1) = m$, we put $s_1' = r_1(s_1') = 0$.) And let $n = \text{Max}(r_1(s_1'), r_2(s_2))$. Then $\dim \mathfrak{g}^1 = 2(s_1 s_1')(m n)$, $\dim \mathfrak{g}^2 = (m n)^2$ and $S = \{(z, w) \in M(m n, m n, C) \times M(m n, s_1 s_1', C); \sqrt{-1}(t\bar{z} z) w t\bar{w} \in H^+(m n, C)\}.$
- (iii) The case $V=H^+(m,K)$ $(m\geq 2)$. Let r(t) be an N-valued non-decreasing function on [1,s] such that $r(s)\leq 2m$. And let $W=\{(u_{kt})\in M(2m,s,C); u_{kt}=0 \text{ for } k>r(t)\}$. Define a V-hermitian form F on W by $F(u,v)=1/2(u^t\overline{v}+J\overline{v}^tu^tJ)$.

Theorem 12. Let D be the Siegel domain associated with V and F.

(1) If
$$r(s) < 2m-1$$
. Let $n = \left\lceil \frac{r(s)+1}{2} \right\rceil$. Then $\dim g^1 = 0$, $\dim g^2$

=(m-n) (2m-2n-1) and S is of the first kind associated with the cone $H^+(m-n, K)$.

- (2) If r(s)=2m-1. Let s' be the integer (s' < s) such that r(s') < 2m-1 and r(s'+1)=2m-1. (In the case r(1)=2m-1, we put s'=0.) Then $\dim \mathfrak{g}^1=2(s-s')$, $\dim \mathfrak{g}^2=1$ and $S=\{(z,w)\in C^1\times M(1,s-s',C); \text{Im } z-w \ {}^t\overline{w}>0\}$.
 - (3) If r(s-1)=2m. Then dim $g^1 = \dim g^2 = 0$ and S = (0).
 - (4) If r(s)=2m and r(s-1)<2m. (In the case s=1, we put r(0)

=0.) Let
$$n = \left[\frac{r(s-1)+1}{2}\right]$$
. Then $\dim \mathfrak{g}^1 = 4(m-n)$, $\dim \mathfrak{g}^2 = (m-n)$

(2m-2n-1) and S is the domain corresponding to the cone $H^+(m-n, K)$ and the function r(t) such that s=1 and r(1)=2(m-n).

Remark. Proofs of Theorem 10, Theorem 11 and Theorem 12 partially use an idea due to T. Tsuji who also calculated dim g^1 and dim g^2 of Theorem 10, Theorem 11 and special cases in Theorem 12 by using different methods in his paper [3].

References

- [1] W. Kaup, Y. Matsushima, and T. Ochiai: On the automorphisms and equivalences of generalized Siegel domains. Amer. J. Math., 92, 475-497 (1970).
- [2] I. I. Pyatetski-Shapiro: Geometry of Classical Domains and Theory of Automorphic Functions. Fizmatgiz, Moscow (1961) (French translation, Paris (1966)).
- [3] T. Tsuji: Siegel domains over self-dual cones and their automorphisms (preprint).