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Introduction. Let D be a Siegel domain of the second kind due
to Pyatetski-Shapiro [2]. We then construct a symmetric Siegel domain
in D which is invariant under a suitable equivalence. At the same
time we establish a structure theorem of the Lie algebra of all infini-
tesimal automorphisms of the domain D.

1. Let ;i=, (p Z, [;i, ;iq] +q) be a graded Lie algebra
over R with dim < oo. Then the radical of is a graded ideal.
Concerning Levi decompositions of , we obtain

Theorem 1. There exists a semi-simple graded subalgebra of
such that -- + .

2. Denote by R (resp. by W) a real (resp. complex) vector space
of a finite dimension, and by R the complexification of R. Let D be
a Siegel domain of the second kind in R W associated with a convex
cone V in R and a V-hermitian form F on W. We denote by (D) the
Lie algebra of all infinitesimal automorphisms of D. Kaup, Matsushima
and 0chiai [1] showed that the Lie algebra (D) has the following
graded structure"

g(D) --6-2 2[_ 6-1 of_ 6 2U 61 l_ 6 ([6p, 6q] 6p+q),_-+-+0 ( gl

where denotes the radical of g(D). By using Theorem 1 we have
Theorem 2. There exists a semi-simple graded subalgebra

=Y2,=_,. of (D) such that
(1) l__x and "= 62,
(2) For any X e o, the condition "[X, +2]=0" implies X=0.
Let be as in Theorem 2. Since is semi-simple, there exists a

unique element E of 0 such that
[E, X]=pX for X

We set
;={X e r-; [, X] 0},
;"={X e r-; [E, X]-- --X},
rg= {X e r; [, X] 0},
r={X e r; [E, X] X}.

In the notations as above, we have the following
Theorem 3. The radical has the following structure"
(1) ---+; (direct sum), =[-,-],
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0= 00 + 0 (direct sum).
(2) ;=[-, 0] [0, -]

:o [ro, o] [r-, ] b:-, ],
dim r:=dim .

(3) aden=0 on -’.
(4) o is an abelian ideal of o satisfying the followings"

a) [r, -+r-] O,
-2b) [,

3. Let be as in Theorem 2. Then we can see-+- (direct sum),
( * g-=-+- (direct sum).
It is well known that the space g- (resp. g-) can be identified with the
space R (resp. W). Then the subspace - is a complex subspace.
Denote by ; the projection of [+- (=R W) onto [+- cor-
responding to the decompositions (.). And put V=i(V). Then V
is a convex cone in - and the restriction F of F to - is a V-hermi-
tian form on -. Let S be the Siegel domain of the second kind in
[+- associated with V and F.

Proposition 4. The projection maps D onto S.
We can also prove
Theorem B. The Siegel domain S is a symmetric homogeneous

domain and may be identified with g(S).
From the construction, we can see that S is contained in D.

Moreover we have
Proposition 6. If --0, then S=D. And if =0, then S is con-

tained in the boundary of D.
Proposition 4 gives a "fibering" of D. We have the following

Theorem 7. Let a, b e S. Then the fibers [l(a) and2 are holo-
morphically equivalent to each other. Moreover every fiber is holo-
morphically equivalent to a bounded domain.

The domain S is constructed from the subalgebra . The follow-
ing theorem implies the uniqueness of such domains.

Theorem 8. Let ’ be another semi-simple graded subalgebra as
in Theorem 2 and let S’ be the corresponding symmetric domain. Then
there exists X e go such that

Ad (exp X)--’, exp X(S)--S’ and exp X ]--], exp X.
Proof of Theorem 8 uses Theorem 3.
4. We now consider domains over classical cones. Denote by

H+(m, R) (resp. by H+(m, C)) the set of all positive definite real sym-
metric (resp. complex hermitian) matrices of degree m. And denote
by H+(m, K) the set {X e H+(2m, C) JX= XJ}, where
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The sets H/(m, R), H/(m, C) and H/(m,K) are irreducible cones.
Proposition 9. Let D be a Siegel domain over a cone stated above.

Suppose -=[-, -]. Then O.
Furthermore we can find the associated symmetric domain S or

any homogeneous Siegel domain constructed in [2] over these cones.
In particular we can calculate dim fi and dim fi. The results are as
follows.

( ) The case V=H+(m,R) (m2). Let r(t) be an N-valued non-
decreasing function on the interval [1, s] (s e N) such that r(s)<=m.
Denote by M(p, q, C) the vector space o all p q complex matrices, and
put W={(ut) eM(m,s,C); u--O for kr(t)}. Define a V-hermitian
form F on W by F(u, v)-- 1/2(u tv + tu)"

Theorem 10. Let D be a Siegel domain associated with V and F
and let n-r(s). Then dim --0, dim g=l/2(m--n) (m--n+1) and S
is the Siegel domain of the first kind associated with the cone
H+(m--n,R).

(ii) The case V=H+(m,C) (m_>_2). Let r(t) be a function on
[1, s] as in (i) (h= 1, 2). And let W be the complex vector space cor-
responding to r(t). We set W=W W and define a V-hermitian
form F on W by F(u, v)--ut+ vtu, where u= (u, u) and v= (v, v).
For the domain corresponding to V and F, we have

Theorem 11. Assume r(s) >= r(s).
(1) If r(s) m. Then dim -- dim fi-- 0 and S- (0).
(2) If r(s)m. Then dim g= 0, dim=(m-r(s)) and S is of

the first kind associated with H+(m--r(s), C).
(3) If r(s)--m and r(s) m. Let sf be the integer (sf s) such

’-r(s)= 0.)that r(s) r(s+ 1) m. (In the case r(1)-m, we put s
And let n--Max (r(s), r(s)). Then dim x--2(s--s)(m--n), dim

(m--n) and S {(z, w) e M(m-n, m-n, C) M(m-n, s--s, C);
r-L-(t_z)_w t e H/{m--n, C)}.

(iii) The case V=H/(m,K) (m2). Let r(t) be an N-valued non-
decreasing unction on [1, s] such that r(s)<=2m. And let W={(ut)
e M(2m, s, C) ut= 0 or kr(t)}. Define a V-hermitian orm F on W
by F(u, v)- 1/2(u tv +J tutj).

Theorem 12. Let D be the Siegel domain associated with V and
F.

(1) If r(s) 2m-- 1. Let n= [ r(s)+ 1 ]. Then dim g= 0, dim g
2
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=(m--n) (2m--2n--1) and S is of the first kind associated with the
cone H/(m--n, K).

(2) If r(s)--2m--1. Let s’ be the integer (s’s) such that r(s’)
2m--1 and r(s’ + 1)-2m--1. (In the case r(1)-2m-1, we put s’-O.)
Then dim fi--2(s--s’), dim -1 and S-{(z, w) e CM(1, s-s’,C)
Im z--w t0}.

(3) If r(s-- 1) 2m. Then dim g= dim-0 and S= (0).
(4) If r(s)=2m and r(s--1)2m. (In the case s=l, we put r(O)

=0.) Let n=| -. Then dim-4(m-n), dim=(m-n)
L J2

(2m--2n-- 1) and S is the domain corresponding to the cone H/(m--n, K)
and the function r(t) such that s=l and r(1)-2(m-n).

Remark. Proofs of Theorem 10, Theorem 11 and Theorem 12
partially use a idea due to T. Tsuji who also calculated dim and
dim o Theorem 10, Theorem 11 and special cases in Theorem 12 by
using different methods in his paper [3].
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