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Introduction. Let D be a Siegel domain of the second kind due
to Pyatetski-Shapiro [2]. We then construct a symmetric Siegel domain
in D which is invariant under a suitable equivalence. At the same
time we establish a structure theorem of the Lie algebra of all infini-
tesimal automorphisms of the domain D.

1. Let g=2,,08? (peZ[g?,g11Cg?*?) be a graded Lie algebra
over R with dim g<<co. Then the radical v of g is a graded ideal.
Concerning Levi decompositions of g, we obtain

Theorem 1. There exists a semi-simple graded subalgebra 3 of
g such that g=3+r.

2. Denote by R (resp. by W) a real (resp. complex) vector space
of a finite dimension, and by R, the complexification of BR. Let D be
a Siegel domain of the second kind in R, x W associated with a convex
cone V in R and a V-hermitian form F on W. We denote by g(D) the
Lie algebra of all infinitesimal automorphisms of D. Kaup, Matsushima
and Ochiai [1] showed that the Lie algebra g(D) has the following
graded structure:

gD)=¢g*+g'+¢"+g' +¢° ([g?, gl g?*9),
r=1"4r7 41 (x?=1Ng?),
where t denotes the radical of g(D). By using Theorem 1 we have

Theorem 2. There exists a semi-simple graded subalgebra
3=>12__,8% of (D) such that

1) &=8 and F=g,

(2) Forany X €8, the condition “[X, 8" +5]=0" implies X=0.

Let 3 be as in Theorem 2. Since 3 is semi-simple, there exists a
unique element E, of 3° such that

[E,, X]=pX for X e 32,
We set
7’ ={Xer?;[3, X]=0},
17’ ={Xer?; [E,, X]=—X]},
={Xer; [3 X]=0},
y={Xer; [E, X]=X}.
In the notations as above, we have the following
Theorem 3. The radical © has the following structure:
1) ri=r?+1? (direct sum), vy, 1,
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=13+ 12 (direct sum).
2 =% 8=0i"% 8o, 871,
=[’ 81=[rt"% &I D[x™", 8],
dim t7?=dim .
3) adE,=0o0nzt"
4) 1 is an abelian ideal of §° satisfying the followings:
a) [x3, 27 +17%]=0,
b) [ 72ty

3. Let 8 be as in Theorem 2. Then we can see

(%) {g‘2=§“2+r“2 (direct sum),

g7 '=8"141¢"! (direct sum).
It is well known that the space g~ (resp. g~!) can be identified with the
space R (resp. W). Then the subspace 37! is a complex subspace.
Denote by 7, the projection of g;2+g~* (=R, X W) onto 3;2+3"! cor-
responding to the decompositions (x). And put V,=»,(V). Then V,
is a convex cone in 37? and the restriction F; of F' to 37! is a V-hermi-
tian form on 387!, Let S be the Siegel domain of the second kind in
5-t4+37! associated with V, and F,.

Proposition 4. The projection », maps D onto S.

We can also prove

Theorem 5. The Siegel domain S is a symmetric homogeneous
domain and 38 may be identified with g(S).

From the construction, we can see that S is contained in D.
Moreover we have

Proposition 6. If t=0, then S=D. And if 10, then S is con-
tained in the boundary of D.

Proposition 4 gives a “fibering” of D. We have the following

Theorem 7. Let a,beS. Then the fibers 57 (a) and 5;* are holo-
morphically equivalent to each other. Moreover every fiber is holo-
morphically equivalent to a bounded domain.

The domain S is constructed from the subalgebra 3. The follow-
ing theorem implies the uniqueness of such domains.

Theorem 8. Let & be another semi-simple graded subalgebra as
in Theorem 2 and let S’ be the corresponding symmetric domain. Then
there exists X e ¢° such that

Ad (exp X)3=%, exp X(S)=S8" and exp Xop,=z,cexpX.

Proof of Theorem 8 uses Theorem 3.

4, We now consider domains over classical cones. Denote by
H*(m, R) (resp. by H*(m,C)) the set of all positive definite real sym-
metric (resp. complex hermitian) matrices of degree m. And denote
by H*(m, K) the set {X e H*(2m, C); JX=XJ}, where
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The sets H*(m, R), H*(m,C) and H*(m, K) are irreducible cones.

Proposition 9. Let D be a Siegel domain over a cone stated above.
Suppose g-*£[g™Y, ¢g7']. Then g'=0.

Furthermore we can find the associated symmetric domain S for
any homogeneous Siegel domain constructed in [2] over these cones.
In particular we can calculate dim ¢' and dim g>. The results are as
follows.

(i) The case V=H*(m,R) (m=2). Let r(t) be an N-valued non-
decreasing function on the interval [1,s] (s e N) such that r(s)<m.
Denote by M(p, q, C) the vector space of all p X ¢ complex matrices, and
put W={(u,) € M(m, s, C); uy,=0 for k>r(t)}. Define a V-hermitian
form F on W by F(u,v)=1/2(u "5+ *u).

Theorem 10. Let D be a Siegel domain associated with V and F
and let n=7(s). Then dim g'=0, dim g*=1/2(m—n) (m—n+1) and S
is the Siegel domain of the first kind associated with the cone
H*(m—mn, R).

(ii) The case V=H"*(m,C) (m=2). Let r,(t) be a function on
[1,s,] asin (i) (h=1,2). And let W, be the complex vector space cor-
responding to 7r,(tf). We set W=W,x W, and define a V-hermitian
form F on W by F(u, v)=u,"v,+7,'u,, where u=(u,u,) and v=(v,,v,).
For the domain corresponding to V and F, we have

Theorem 11. Assume 1,(s,) =7,(s,).

Q) If r(s))=m. Then dim g'=dim ¢°=0 and S=(0).

@) If r(sp<m. Then dim g'=0, dim g*=(m—7r,(s,))? and S is of
the first kind associated with H*(m—r(s,), C).

B) If ri(s)=m and r,(s,)<m. Let s, be the integer (s,<s,) such
that r(s) <r(si+1)=m. (In the case r(1)=m, we put si=r,(s)=0.)
And let n=Max (r,(s),r,s)). Then dim g'=2(s,—s})(m—mn), dim g
=(m—n) and S={z, w)eM(m—n, m—n, C) X M(m—n, s,—s, C);
V=1(Z—2)—w ‘w e H¥m—n, C)}.

(iii) The case V=H*(m,K) (m=2). Let 7(t) be an N-valued non-
decreasing function on [1,s] such that »(s)<2m. And let W={(u;;)
e M(2m, s, C); uy;=0 for k>r(t)}. Define a V-hermitian form F on W
by F(u,v)=1/2(u 0+ J7 utJ).

Theorem 12. Let D be the Siegel domain associated with V and
F.

Q) If rs)<2m—1. Let n:[’"(s)z“]. Then dim ¢'=0, dim g
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=(m—n) @m—2n—1) and S is of the first kind associated with the
cone H*(m—mn, K).

@) If r(s)=2m—1. Let s’ be the integer (s <s) such that r(s’)
<2m—1and r(s +1)=2m—1. (Inthe case r(1)=2m—1, we put & =0.)
Then dim g'=2(s—¢), dimg’=1 and S={E,w)eC'xXMQ1,s—5,0);
Im z—w w>0}.

@ If r(s—1)=2m. Then dim g'=dim ¢*=0 and S=(0).

@ If r(s)=2m and r(s—1)<2m. (In the case s=1, we put r(0)
=0.) Let n= [—*—7(8“21) +1
@2m—2n—1) and S is the domain corresponding to the cone H*(m—n, K)
and the function r(t) such that s=1 and r(1)=2(m—mn).

Remark. Proofs of Theorem 10, Theorem 11 and Theorem 12
partially use an idea due to T. Tsuji who also calculated dim g' and
dim g* of Theorem 10, Theorem 11 and special cases in Theorem 12 by
using different methods in his paper [3].

]. Then dim ¢g'=4(m—n), dim g*=(m—n)
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