84. Extremely Amenable Transformation Semigroups. II

By Kôkichi SAKAI

(Comm. by Kinjirô Kunugi, M. J. A., June 11, 1974)

Introduction. Let S be a semigroup and X a nonvoid set. we shall say that the pair (S, X) is a transformation semigroup if for every $s \in S$ there corresponds a map: $X \ni x \mapsto sx \in X$ such that s(tx)=(st)x for all s, t in S and x in X. Let B(X) be the Banach algebra of all real valued bounded functions on X with the supremum norm and $B(X)^*$ the conjugate Banach space of B(X). For every $s \in S$ define the map $L_s: B(X) \to B(X)$ by $L_s f = f$ for $f \in B(X)$, where f(x)= f(sx) for x in X. Then we have $L_sL_t = L_{ts}$ and $||L_s|| \le 1$ for all s, t in S. The map $L: s \mapsto L_s$ is called the left regular antirepresentation of S on B(X). $\varphi \in B(X)^*$ is a mean on B(X) if $\inf \{f(x) : x \in X\} \le \varphi(f)$ $\leq \sup \{f(x): x \in X\}$ for all $f \in B(X)$. If φ is a mean on B(X), we have $\|\varphi\| = \varphi(I_X) = 1$ where I_X is the constant one function on X. $\varphi \in B(X)^*$ is called *invariant* if $\varphi(s,f) = \varphi(f)$ for all $(s,f) \in S \times B(X)$. $\varphi \in B(X)^*$ is multiplicative if $\varphi(f \circ g) = \varphi(f) \cdot \varphi(g)$ for all $f, g \in B(X)$. By βX denote the set of all multiplicative means on B(X), which is a w^* -compact subset of $B(X)^*$. For every $x \in X$ define $\delta_x \in \beta X$ by $\delta_x(f)$ = f(x) for all $f \in B(X)$ and denote by δ the map: $X \ni x \mapsto \delta_x \in \beta X$. Now we shall say a transformation semigroup (S, X) is extremely amenable if there is a multiplicative invariant mean on B(X).

On extremely amenable transformation semigroups they are investigated by E. Granirer in [2] and by the author in [6]. In this paper, using the results in [2] and [6], we shall give various characterizations of extremely amenable transformation semigroups by means of the so-called "fixed-point property", "multiplicative invariant extension property" and "Reiter-Glicksberg's inequality". In § 4 we note addenda to my papers [6] and [7].

§ 1. Fixed-point property. We say a transformation semigroup (S,X) has a fixed-point if there is some x_0 in X such that $sx_0=x_0$ for all $s \in S$. A transformation semigroup (S,Z) is called compact if Z is a compact Hausdorff space and for every $s \in S$ the map: $Z \ni z \mapsto sz \in Z$ is continuous. For example, for every $(s,\varphi) \in S \times \beta X$ define $s\varphi \in \beta X$ by $s\varphi(f)=\varphi(sf)$ for $f \in B(X)$. Then $(S,\beta X)$ is compact. Clearly (S,X) is extremely amenable if and only if $(S,\beta X)$ has a fixed-point. Let (S,X) and (S,Y) be transformation semigroups. A map $\sigma:X \to Y$ is called a homomorphism of (S,X) to (S,Y) if $s\sigma(x)=\sigma(sx)$ for all $(s,x) \in S \times X$.

The following theorem is a generalization of the so-called "common fixed-point property on compacta" due to T. Mitchell [5].

Theorem 1. The following properties are equivalent.

- (1) A transformation semigroup (S, X) is extremely amenable.
- (2) For any given compact transformation semigroup (S, Z), if there is a homomorphism σ of (S, X) to (S, Z), then (S, Z) has a fixed-point.

Proof. (1) \Rightarrow (2): Let φ be a multiplicative invariant mean on B(X) and C(Z) the Banach algebra of all real valued continuous functions on Z with the supremum norm. For any $f \in C(Z)$ define $\sigma^* f \in B(X)$ by $\sigma^* f(x) = f(\sigma(x))$ for $x \in X$. Then σ^* is a continuous homomorphism of C(Z) into B(X) as Banach algebra and $\tilde{\varphi} = \varphi \cdot \sigma^*$ is a nonzero multiplicative linear functional on C(Z). So there is a point z_0 such that $\tilde{\varphi}(f) = f(z_0)$ for all $f \in C(Z)$. Furthermore we have

 $f(sz_0) = \tilde{\varphi}(_sf) = \varphi(\sigma^*(_sf)) = \varphi(_s(\sigma^*f)) = \varphi(\sigma^*(f)) = \tilde{\varphi}(f) = f(z_0)$ for every $(s, f) \in S \times C(Z)$. Since C(Z) separates the points of Z, we have $sz_0 = z_0$ for all $s \in S$.

- $(2) \Rightarrow (1)$: $(S, \beta X)$ is compact and the map δ is a homomorphism of (S, X) to $(S, \beta X)$. So, by (2), $(S, \beta X)$ has a fixed-point. Thus (S, X) is extremely amenable. q.e.d.
- § 2. Multiplicative invariant extension property. Let (S, X) be a transformation semigroup, E and F (real or complex) algebras, Hom (E, F) the set of all homomorphisms of E into F as algebras and $\{T_s; s \in S\}$ an antirepresentation of S by homomorphisms of E into itself. Now, for every $(s, \Phi) \in S \times \text{Hom } (E, F)$ define $s\Phi \in \text{Hom } (E, F)$ by $s\Phi = \Phi T_s$. Then (S, Hom (E, F)) is a transformation semigroup. Furthermore we assume that there exists a homomorphism σ of (S, X)to (S, Hom (E, F)), that is, there is a map $\sigma: X \to \text{Hom } (E, F)$ such that $\sigma(sx) = \sigma(x)T_s$ for all $(s, x) \in S \times X$. In this case we shall say the collection $\{T, E, \sigma, F\}$ is an algebra representation of (S, X). Especially if E and F are Banach algebras with unit, the collection $\{T, E, \sigma, F\}$ is called a Banach algebra representation of (S, X). For example $\{L, \}$ $B(X), \delta, R$ is a Banach algebra representation of (S, X), where L is the left regular antirepresentation of S on B(X) and R the real field. By $\mathfrak{M}(E)$ denote the set of all multiplicative linear functionals on a Banach algebra E with unit, which is w^* -compact in E^* . We shall say a Banach algebra representation $\{T, E, \sigma, F\}$ of (S, X) has multiplicative invariant extension property if it satisfies the following conditions (#).
- (#): Let E_0 be any subalgebra of E such that $T_s(E_0) \subseteq E_0$ for all $s \in S$ and $\varphi_0 \in \mathfrak{M}(E_0)$ satisfy $\varphi_0(T_s f) = \varphi_0(f)$ for all $(s, f) \in S \times E_0$. Moreover assume that there exists a $\psi \in \mathfrak{M}(F)$ such that $\varphi_0(f) = \psi(\sigma(x)f)$ for all $(x, f) \in X \times E_0$. Then there exists an extension $\varphi \in \mathfrak{M}(E)$ of φ_0 such

that $\varphi(T_s f) = \varphi(f)$ for all $(s, f) \in S \times E$.

Now, for φ_0 and ψ in the condition (\sharp) , we put $\mathfrak{M}(\varphi_0) = \{\varphi \in \mathfrak{M}(E); \varphi \text{ is equal to } \varphi_0 \text{ on } E_0\}$ and define a map $\tilde{\sigma} \colon X \ni x \mapsto \tilde{\sigma}(x) = \sigma(x)^* \psi \in \mathfrak{M}(\varphi_0)$. For every $(s,\varphi) \in S \times \mathfrak{M}(\varphi_0)$ define $s\varphi \in \mathfrak{M}(\varphi_0)$ by $s\varphi = \varphi T_s$. Then $(S,\mathfrak{M}(\varphi_0))$ is a compact transformation semigroup and the map $\tilde{\sigma}$ is a homomorphism of (S,X) to $(S,\mathfrak{M}(\varphi_0))$. If (S,X) is extremely amenable, by Theorem 1, $(S,\mathfrak{M}(\varphi_0))$ has a fixed-point, that is, there exists a $\varphi \in \mathfrak{M}(E)$ such that $\varphi(T_sf) = \varphi(f)$ and $\varphi(g) = \varphi_0(g)$ for all $(s,f,g) \in S \times E \times E_0$. Thus if (S,X) is extremely amenable, any Banach algebra representation $\{T,E,\sigma,F\}$ of (S,X) has multiplicative invariant extension property. Conversely suppose that $\{L,B(X),\delta,R\}$ has multiplicative invariant extension property. Let $E_0 = \{cI_X; c \in R\}$ and $\varphi_0 \in \mathfrak{M}(E_0)$ define by $\varphi_0(cI_X) = c$. Then $\varphi_0(sf) = \varphi_0(f) = \psi(\delta(x)f)$ for all $(s,x,f) \in S \times X \times E_0$, where ψ is the identity map on R. So, by multiplicative invariant extension property, there exists a $\varphi \in \mathfrak{M}(B(X)) = \beta X$ such that $\varphi(sf) = \varphi(f)$ for all $(s,f) \in S \times B(X)$. Thus we have

Theorem 2. The following conditions are equivalent.

- (1) A transformation semigroup (S, X) is extremely amenable.
- (2) Any Banach algebra representation $\{T, E, \sigma, F\}$ of (S, X) has multiplicative invariant extension property.

Corollary. The following conditions are equivalent.

- (1) A transformation semigroup (S, X) is extremely amenable.
- (2) For any Banach algebra representation $\{T, E, \sigma, F\}$ of (S, X) if $\mathfrak{M}(F)$ is nonempty, then there is a $\varphi \in \mathfrak{M}(E)$ such that $\varphi(T_s f) = \varphi(f)$ for all $(s, f) \in S \times E$.
- § 3. Reiter-Glicksberg's inequality. Let $\{T, E, \sigma, F\}$ be an algebra representation of a transformation semigroup (S, X) and H(T) the left ideal of E generated by $\{T_s v v \; ; \; v \in E, s \in S\}$.

Theorem 3. The following conditions are equivalent.

- (1) A transformation semigroup (S, X) is extremely amenable.
- (2) For any algebra representation $\{T, E, \sigma, F\}$ of (S, X) we have $H(T) \subseteq \{u \in E : \sigma(x)u = 0 \text{ for some } x \in SX\}.$

Proof. (1) \Rightarrow (2): Let $f = \sum_{i=1}^{n} u_i(T_{s_i}v_i - v_i) \in H(T)$ where $(u_i, v_i, s_i) \in E \times E \times S$ for $1 \le i \le n$. Then, from Theorem 2 in [6], there is a point x_0 in SX such that $s_i x_0 = x_0$ for $1 \le i \le n$. So we have $\sigma(x_0) f = \sum_{i=1}^{n} \sigma(x_0) u_i (\sigma(s_i x_0) v_i - \sigma(x_0) v_i) = 0$.

(2) \Rightarrow (1): Applying the condition (2) to the algebra representation $\{L, B(X), \delta, R\}$ of (S, X) for any function $h \in H(L)$ (which is denoted by $\mathfrak{F}(X)$ in [6]) there exists a point x_0 in X such that $h(x_0)=0$. Thus, by Theorem 2 in [6], (S, X) is extremely amenable.

Now we shall say a Banach algebra representation $\{T, E, \sigma, F\}$ of (S, X) is uniformly bounded if $||T_s|| \le 1$ and $||\sigma(x)|| \le 1$ for all $(s, x) \in S \times X$.

Theorem 4. The following conditions are equivalent.

- (1) A transformation semigroup (S, X) is extremely amenable.
- (2) For any uniformly bounded Banach algebra representation $\{T, E, \sigma, F\}$ of (S, X) we have

$$\inf \{ \|f - h\|; h \in H(T) \} \ge \inf \{ \|\sigma(x)f\|; x \in SX \}$$
 (RG) for all $f \in E$.

Proof. (1) \Rightarrow (2): Let $h \in H(T)$. Then, by Theorem 3, there is a point x_0 in SX such that $\sigma(x_0)h=0$. So $||f-h|| \ge ||\sigma(x_0)f-\sigma(x_0)h|| = ||\sigma(x_0)f||$. Thus we have (RG) for all $f \in E$.

(2) \Rightarrow (1): Applying (RG) to $\{L, B(X), \delta, R\}$ we have $\inf \{||I-h||; h \in H(L)\}=1$. Thus, by Lemma 3 (c) in [2], (S, X) is extremely amenable.

The inequality (RG) is a generalization of the so-called *Reiter-Glicksberg's inequality* (see Expose n°2 in [1]).

§ 4. Addenda to my papers [6] and [7]. 1) In the proof of Theorem 1 in [6, p. 425], there is a gap. So we insert the following Lemma 2 after Lemma 1 in [6]. Then the proof of Theorem 1 in [6] becomes clear.

Lemma 2. Under the notations in [6, p. 425], put $Z = \bigcup_{k=2}^{\infty} (\bigcup_{i=1}^{k-1} X_i^k)$. Then there exists a partition $Z = \bigcup_{i=1}^5 Z_i$ such that $sZ_i \cap Z_i = \phi$ for $1 \le i \le 5$.

2) In the statement of Theorem 1 (2) in [7], instead of " $\cdots \varphi \in IM(X) \cdots$ " we should be " $\cdots \varphi \in \beta X \cdots$ ".

References

- [1] P. Eymard: Moyennes invariantes et Representations unitaires. Lecture Notes in Math., Vol. 300. Springer-Verlag (1972).
- [2] E. E. Granirer: Extremely amenable semigroups. II. Math. Scand., 20, 93-113 (1967).
- [3] —: Functional analytic properties of extremely amenable semigroups. Trans. Amer. Math. Soc., 137, 53-75 (1969).
- [4] A. T. Lau: Functional analytic properties of topological semigroups and N-extremely amenability. ibid., 152, 431-439 (1970).
- [5] T. Mitchell: Fixed points and multiplicative invariant means. ibid., 122, 195-202 (1966).
- [6] K. Sakai: Extremely amenable transformation semigroups. Proc. Japan Acad., 49, 424-427 (1973).
- [7] —: Amenable transformation groups. II. ibid., 49, 428-431 (1973).