Nos. 5, 6] Proc. Japan Acad., 50 (1974) 329

74. A Generalization of Bieberbach’s Example

By Masahide KATO
Department of Mathematics, Rikkyo University, Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., June 11, 1974)

1. Bieberbach constructed an example of a biholomorphic map-
ping of C? onto a proper open subset of C* ([1], see also [3]). His con-
struction depends on the following fact. Let g:2z—g(2) be a complex
analytic automorphism of C? of which the origin 0 is a fixed point g(0)
=0. The automorphism g induces a linear transformation of the tan-
gent space T(C? (=C? of C* at 0. Assume that the eigenvalues «,, «,
of the linear transformation satisfy 1>|«,|>|a,. Then the set

U= {z e C?: lim g”(z):O}

v+ 00

is complex analytically isomorphic to C?. The purpose of this paper is
to generalize the above fact. Namely we shall prove

Theorem. Let X be a complex space of dimension m. Assume
that there exists a complex analytic automorphism g and a point 0 ¢ X
such that g(0)=0 and ¢*(z)—0 (v— + o) for any point zc X. Then X
18 complex analytically isomorphic to an affine variety. If, moreover,
X is non-singular at 0, then X=C™.

In [2], it is shown that the latter statement holds and that, if X is
singular, X can be embedded into C” as a closed subvariety which is
invariant under a contracting complex analytic automorphism § of C»
such that g(0)=0 and §,y=g, where 0 denotes the origin of C*. Let

(24, -+ -, 2,) be a standard system of coordinates of C*. We may assume
that § has the following form;
=2,

Hm=2+az,

7
2 =%t a2,

’
(1) 21 =R 1+ Py (2, -, zrl)
7
z?‘1+7‘2=z71+72—-1+azzrl+rg+Prl+rg (2«'1, R} zrl)
z, =2 +P (Ryy »+ 092y 2 <oy Zyiir,)
r14re+1 = O3 1 rg 1 T1+72+1 1 I ®ryy Fritly I Rri+7e

z;l,=z7l—l+apz’n+P7L (zly ) z'rl+...+r,,_1)9
where 1>|a;|>|a,|> - >|a,|>0 and P; (r,+ -« - +7,<j<r+ - -« +74,0)
are finite sums of monomials 2. . -z;7* which satisfy «,,,,=a™. ..o,
my+ -« - +m,,>2 and m, >0 ([4], [5]).
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2. Since the number of irreducible branches of X at 0 is finite,
X has a finite number of irreducible components X, (j=1,2,-..). Hence
there exists a positive integer I such that §' acts on each X, as a con-
tracting automorphism which has the similar form to (1). Therefore
we may assume that X is an irreducible subvariety.

Lemma 1. Let Z be a j-invariont subvariety in C* such that Z>X
and dim Z>dim X. Then there exists a non-constant holomorphic
function f on Z such that §*f=caf (0<|a|<1) and f,,=0.

Proof. It isclear that both Z and X contain the origin 0 e C*. Let
D be a relatively compact neighborhood of 0 in Z such that §(D)cD,
where D denotes the closure of D in Z. Let & be a vector space of
holomorphic functions defined by

B { f: fis abounded holomorphic function}.
on D such that f,x,,=0
We define the norm || ||, for fe B by

Il.f IID=§3L§> |f(@)].

Then (4%,] ||p) is clearly a Banach space. The linear mapping §*: B
— B defined by (§*f)(2)=f(§(2)) is a compact operator by Vitali’s
theorem. It is easy to see that [[§*|, <1 and (| §*flr=| S|, implies f
=0. Now we shall show that there exists a non-zero element f,e 3B
such that

J*fo=af, 0<]a|<D).
Put
(2) RA)=I—-23")",
where I denotes the identity operator. Since §* is a compact operator,
any spectrum except 0 is an eigenvalue ([7]). Hence if there is no such
fo» then R(2) is an entire function of 2 on C. This implies that the
radius of the circle of convergence of the Taylor expansion of (2) is in-
finite, i.e., lim,_,.”v[§®[,=0. This is equivalent to saying that
for any ¢>>0, there exists an integer v, such that
(3) 1% lp<e’
for v>y,. Letm, ,denote the maximal ideal of O, , p a positive integer
such that there exists an element 7 ¢ @ which is not contained in mg?;.
Fix a positive number ¢ such that ¢<|e;|*** for all 7 (i=1,2, ..., ).
Then

e a**hllo>Rlln

for sufficiently large v. But this contradicts (3). Hence there exists
a non-zero element f, ¢ $ such that §*f,=af, (0<]a|<1). For every
positive integer v, we have
(4) SR =a7f(§(2))  (2eD).
Since a~*§*'f, is defined on (D) and {_J, §~*(D)=1Z, it follows from (4)
that f, can be continued analytically to a holomorphic function f on Z
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such that §*f=af. It is clear that f,,=0. Q.E.D.
Denote by | 2| the norm of the point z2=(z,, - - -, 2,) € C* defined by
2l =2+ - - - |2l
Lemma 2. Let Z be a g-invariant subvariety in C* and f a holo-
morphic function on Z which satisfies the equality

(5) J*f=af 0 <]a|<D).
Then f satisfies the following inequality ;
(6) [fR)ISMA+|z]DY,

where M and N are positive constants which are independent of z¢ Z.

Proof. Let K be a closed small neighborhood of 0 € C* defined by
|z||<e. First we estimate by |/z| the minimum integer v such that
g*(®)e K. By (), the j-th coordinate (r,+ .- - +7,<j<r+ .- +7.,)
of the point §*(2) is given by

(0R);=as o {2;+ Q0,215 - -+, 25 1)},
where @, is a polynomial of v,2,, ---,2,_;,. Hence we get
” gv(z)“S; |0(s+1|v {,zj"l'le(V’ TRRRE zj—l)l}'

Then it is easy to see that, for some positive constants A, B and p
(|a;]<B<1 for all %), the following inequality holds;
7@ I<ABA+]2D2.
Let » be the least integer such that v> —(log g)~'-log (A(1+||2|)B/e).
Then || §*(z) ||<e, therefore §*(z) e K. Then, by (5),
[f(@)|=|a™f(§(2))]

Llel I flle (I flle=8up.ex [S(R))

_<_|a|(losﬁ)~l-los(A(1+||zll)8/u)~1,”f“K

=(A@Q+||z|)B/e)ost Dol | g~ ||| f|g.
Putting N=B (log|a))/log g and M =(A/e)¥2.|a™*|-| f ||z, We get

[fRI<MA4+||z]DY. Q.E.D.

W. Rudin [6] proved the following

Theorem 3. An analytic subvariety V of pure dimension k in C*
is algebraic if and only if V lies in some algebraic region of type (k,n).

By [6], a set 2 in C" will be called an algebraic region of type (k, n)
if there are vector subspaces E,F in C" and a positive real numbers
A, B such that the following conditions hold: dim E=k, dim F=n—k,
C"=E ®F (direct sum) and 2 consists precisely of the points z e C”
satisfying the inequality

" <AQH+2]D?,
where z2=2'+2",2 ¢ K, 2’ F.

Lemma 4. Let Z be o j-invariant pure dimensional affine sub-
variety of C*, f a holomorphic function on Z such that §*f=af (0<|a|
<1). Then the zero locus Y={ze Z: f(2)=0} is a §-invariant affine
subvariety of C".

Proof. It is sufficient to show that the graph
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I'y={(z,w) e ZXC: w=f(2)}

is an affine subvariety of C* X C=C"*!. By Theorem 3, there exists an
algebraic region of type (k,n) such that
(1) ZC{(#,2") e CEXCm e ||2|| <A +]12' DB},
where we can choose the subspace C* so that there exists an algebraic
branched covering §: Z—C*. By (6), we have

I';c{@,w) e ZXC:|w|<MQA+|z|p¥rcC*.
Hence, by (7), for points (z,w) € Iy,
(8) [w|<MQA+|2 ||+’ DY <MA 4|2’ |+ A+ |2’ [PZ)Y
<M, +||2 DY,
where M, and N, are some positive constants. Thus combining (8) with
(7)), we get

@7, W <AQ+(2'|D?+ M, A+ DY
<ML+ e (for some M, and N,).

Hence the graph I'; is contained in an algebraic region of type (k, n+1).
Hence, by Theorem 3, I', is an affine subvariety, since I', is pure
dimensional. Q.E.D.

Finally we prove the following

Lemma 5. Let Z be a J-invariant pure dimensional affine sub-
variety of C* such that ZOX and dim Z>dim X. Then there exists a
Jg-invariant pure dimensional affine subvariety Y of C* such that ZDOY
DX and dimZ=dimY+1. If dimZ=dim X+1, then X is an affine
subvariety of C".

Proof. Let Z, be an irreducible component of Z such that Z,DX.
Put W=UJ,.z§(Z,). Then W is a §-invariant pure dimensional affine
subvariety of C* which consists of the irreducible components of Z.
Applying Lemmas 1 and 4 to W, we get a j-invariant affine subvariety
Y defined by f which is a non-constant holomorphic function on W.
Now Y contains no irreducible components of W. In fact, if Y con-
tains an irreducible component of W, then f vanishes identically on
W. Hence Y is pure dimensional and dim Y=dim Z—1. The latter
statement is clear, since X is an irreducible component of the affine
variety Y.

3. By Lemma 5, our main theorem can easily be proved by the
induction on the codimengion of X in Z. (Note that Z may be equal
to C™.)
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