165. On Approximation of Nonlinear Semi-groups

By Yoshikazu Kobayashi
Department of Mathematics, Waseda University
(Comm. by Kinjirô KunugI, m. J. A., Nov. 12, 1974)

1. Let X be a real Banach space and let X_{0} be a subset of X. By a contraction semi-group on X_{0}, we mean a family $\{T(t) ; t \geq 0\}$ of operators from X_{0} into itself satisfying the following conditions:
(i) $T(0)=I$ (the identity), $T(t+s)=T(t) T(s)$ for $t, s \geq 0$;
(ii) $\|T(t) x-T(t) y\| \leq\|x-y\|$ for $t \geq 0$ and $x, y \in X_{0}$;
(iii) $\lim _{t \rightarrow 0+} T(t) x=x$ for $x \in X_{0}$.

We define the infinitesimal generator A_{0} of $\{T(t) ; t \geq 0\}$ by $A_{0} x$ $=\lim _{h \rightarrow 0+} h^{-1}(T(h) x-x)$, whenever the right side exists.

Throughout this paper, we assume that X_{0} is a closed convex set in X and $\{T(t) ; t \geq 0\}$ is a contraction semi-group on X_{0}. Let us set (1.1)

$$
A_{h}=h^{-1}(T(h)-I) \quad \text { for } h>0
$$

Then, for each h, there is the unique contraction semi-group $\left\{T_{h}(t) ; t \geq 0\right\}$ on X_{0}, with the infinitesimal generator A_{h}, and it satisfies
(1.2) $\quad(d / d t) T_{h}(t) x=A_{h} T_{h}(t) x \quad$ for $x \in X_{0}$ and $t \geq 0$.
(See Appendix in [10].)
Our purpose is to prove the following theorem.
Theorem. For each $x \in X_{0}$, we have
(1.3)

$$
T(t) x=\lim _{h \rightarrow 0+} T_{h}(t) x \quad \text { for } t \geq 0,
$$

and the convergence is uniform with respect to t in every bounded interval of $[0, \infty)$.

Remarks. 1) I. Miyadera showed in [9] that the convergence (1.3) holds true for $x \in \bar{E}$, where E is the set of $x \in X_{0}$ such that $\left\|A_{h} x\right\|$ is bounded as $h \rightarrow 0+$. Under the similar conditions, many authors have also treated the convergence (1.3). (See [2], [4], [8] and [10].)
2) This theorem is well known in linear theory. (See [5].)
2. For the proof of Theorem, we shall prepare several lemmas in this section. The following is known.

Lemma 1. Let $x \in X_{0}$ and $h>0$. Then for $t>0$,

$$
\begin{array}{r}
\left\|A_{h} T_{h}(t) x\right\| \leq\left\|A_{h} x\right\| \\
\left\|T_{h}(t) x-x\right\| \leq t\left\|A_{h} x\right\| . \tag{2.2}
\end{array}
$$

Let F be the duality map on X into X^{*} and we set $\langle x, y\rangle_{s}$ $=\sup \{\langle x, f\rangle ; f \in F(y)\}$ for $x, y \in X$.

Lemma 2. Let $x, z \in X_{0}, h>0$ and n be a positive integer. Then we have

$$
\begin{equation*}
\|z-x\|^{2} \geq\|T(n h) z-x\|^{2}+2 \sum_{i=1}^{n} h\left\langle-A_{h} x, T(i h) z-x\right\rangle_{s} . \tag{2.3}
\end{equation*}
$$

Proof. By the definition (1.1) of A_{h}, we have $T(h) x=x+h A_{h} x$. Therefore

$$
\begin{aligned}
\|T((i-1) h) z-x\|^{2} & \geq\|T(i h) z-T(h) x\|^{2}=\left\|T(i h) z-x-h A_{h} x\right\|^{2} \\
& \geq\|T(i h) z-x\|^{2}+2 h\left\langle-A_{h} x, T(i h) z-x\right\rangle_{s},
\end{aligned}
$$

for each $i=1,2, \cdots, n$, where we used the inequality: $\|u+v\|^{2} \geq\|u\|^{2}$ $+2\langle v, u\rangle_{s}$. If we add these inequalities for $i=1,2, \cdots, n$, we have (2.3).
Q.E.D.

Lemma 3. For each $x \in X_{0}$, we have

$$
\begin{equation*}
\lim _{(t, h) \rightarrow(0,0)} T_{h}(t) x=x . \tag{2.4}
\end{equation*}
$$

Proof. We mimic M. Crandall and T. Liggett [3] as follows. (See also T. Kato [6].) Let $z, x \in X_{0}$ and n be a positive integer. Then by Lemma 2, we have

$$
\begin{align*}
& \left\|z-T_{h}(\sigma) x\right\|^{2} \geq\left\|T(n h) z-T_{h}(\sigma) x\right\|^{2} \\
& \quad+2 \sum_{i=1}^{n} h\left\langle-A_{h} T_{h}(\sigma) x, T(i h) z-T_{h}(\sigma) x\right\rangle_{s} . \tag{2.5}
\end{align*}
$$

We also have

$$
\begin{aligned}
& \left\|T(n h) z-T_{h}(\sigma) x\right\|^{2} \\
& \quad=\left\|z+n h A_{n h} z-T_{h}(\sigma) x\right\|^{2} \geq\left\|z-T_{h}(\sigma) x\right\|^{2} \\
& \quad+2 n h\left\langle A_{n h} z, z-T_{h}(\sigma) x\right\rangle_{s}
\end{aligned}
$$

and

$$
\left\langle A_{n h} z, z-T_{h}(\sigma) x\right\rangle_{s} \geq-\left\|A_{n h} z\right\|\left(\|z-x\|+\left\|x-T_{h}(\sigma) x\right\|\right) .
$$

Thus, combining these inequalities with (2.5), we have

$$
\begin{align*}
& 0 \geq-\left\|A_{n h} z\right\|\left(\|z-x\|+\left\|x-T_{h}(\sigma) x\right\|\right) \tag{2.6}\\
& \quad+(2 / n) \sum_{i=1}^{n}\left\langle-A_{h} T_{h}(\sigma) x, T(i h) z-T_{h}(\sigma) x\right\rangle_{s} .
\end{align*}
$$

By T. Kato's lemma, we have
(2.7) $\quad(d / d \sigma)\left\|T(i h) z-T_{h}(\sigma) x\right\|^{2}=2\left\langle-A_{h} T_{h}(\sigma) x, T(i h) z-T_{h}(\sigma) x\right\rangle_{s}$
for a.a. $\sigma \geq 0$. Therefore, integrating (2.6) with respect to σ, we have

$$
\begin{align*}
0 \geq- & -2 A_{n h} z \|\left(t\|z-x\|+\int_{0}^{t}\left\|x-T_{h}(\sigma) x\right\| d \sigma\right) \tag{2.8}\\
& +(1 / n) \sum_{i=1}^{n}\left(\left\|T(i h) z-T_{h}(t) x\right\|^{2}-\|T(i h) z-x\|^{2}\right) .
\end{align*}
$$

But

$$
\begin{aligned}
& \left\|T(i h) z-T_{h}(t) x\right\|^{2}-\|T(i h) z-x\|^{2} \\
& \quad \geq-2\|T(i h) z-x\|\left\|x-T_{h}(t) x\right\|+\left\|x-T_{h}(t) x\right\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \|T(i h) z-x\| \leq\|T(i h) z-T(i h) x\| \\
& \quad+\|T(i h) x-x\| \leq\|z-x\|+\|T(i h) x-x\| .
\end{aligned}
$$

Therefore, (2.8) implies

$$
\begin{aligned}
& \left\|x-T_{h}(t) x\right\|^{2} \leq 2\left(\|z-x\|+(1 / n) \sum_{i=1}^{n}\|T(i h) x-x\|\right)\left\|x-T_{h}(t) x\right\| \\
& \quad+2\left\|A_{n h} z\right\|\left(t\|z-x\|+\int_{0}^{t}\left\|x-T_{h}(\sigma) x\right\| d \sigma\right) .
\end{aligned}
$$

Let us set $z=T_{n h}(t) x$. Then by Lemma 1, it follows that $\|z-x\|$ $\leq t\left\|A_{n h} x\right\|$ and $\left\|A_{n h} z\right\| \leq\left\|A_{n h} x\right\|$. Hence, by simple calculation, we obtain the following estimate:

$$
\begin{equation*}
\left\|x-T_{h}(t) x\right\| \leq \eta\left(t\left\|A_{n h} x\right\|+(1 / n) \sum_{i=1}^{n}\|T(i h) x-x\|\right), \tag{2.9}
\end{equation*}
$$

where η is a universal constant. (See Remark after the Proof.)
Now we set $\omega_{0}(r)=\sup \{\|T(t) x-x\| ; 0 \leq t \leq r\}$. Apparently, $\omega_{0}(r)$ $\rightarrow 0$ as $r \rightarrow 0+$. Given $\varepsilon>0$, pick $\delta>0$ so that $\omega_{0}(\delta)<\varepsilon$. Let $0<h \leq \delta / 2$. Then $\delta / 2 \leq n h \leq \delta$ for suitable n. Noting that $A_{n h} x=(T(n h) x-x) / n h$, by (2.9) with this n, we have

$$
\left\|x-T_{h}(t) x\right\| \leq \eta(2 t / \delta+1) \varepsilon .
$$

Hence

$$
\left\|x-T_{h}(t) x\right\| \leq 2 \eta \varepsilon
$$

for $0<h \leq \delta / 2$ and $0<t \leq \delta / 2$.

> Q.E.D.

Remark. Put $\varphi(t)=\sup _{0 \leq o \leq t}\left\|x-T_{h}(\sigma)\right\|$. Then we have easily

$$
\begin{aligned}
& \varphi(t) \leq 2\left(t\left\|A_{n h} x\right\|+(1 / n) \sum_{i=1}^{n}\|T(i h) x-x\|\right) \varphi(t) \\
&+2\left\|A_{n h} x\right\|\left(t^{2}\left\|A_{n h} x\right\|+t \varphi(t)\right) .
\end{aligned}
$$

Noting $\left\|x-T_{h}(t) x\right\| \leq \varphi(t)$, we have (2.9) immediately with $\eta \leq 2+\sqrt{6}$.
3. In this section, we give the proof of Theorem. For the purpose, we also consider the family of operators, $\{T([t / h] h) ; t \geq 0\}$, for each $h>0$, where $[t / h$] is the greatest integer not exceeding t / h.

Let $x \in X_{0}$ and $T>0$. Lemma 3 shows that $\left\|T_{h}(t) x\right\|$ is uniformly bounded on $[0, T]$ as $h \rightarrow 0+$. And apparently, $\|T([t / h] h) x\|$ is uniformly bounded on [0, T]. Thus we choose constants M_{T} and $h_{0}>0$ so that

$$
\begin{equation*}
\left\|T_{h}(t) x\right\|,\|T([t / h] h) x\| \leq M_{T} \tag{3.1}
\end{equation*}
$$

for all $t \in[0, T]$ and $0<h \leq h_{0}$.
Lemma 4. Let $0<h \leq h_{0}$. Then

$$
\begin{align*}
& \int_{\alpha}^{\beta}\left\{\left\|T([t / h] h) x-T_{h}(\sigma) x\right\|^{2}-\left\|T([s / h] h) x-T_{h}(\sigma) x\right\|^{2}\right\} d \sigma \\
& \quad+\int_{s}^{t}\left\{\left\|T([\tau / h] h) x-T_{h}(\beta) x\right\|^{2}-\left\|T([\tau / h] h) x-T_{h}(\alpha) x\right\|^{2}\right\} d \tau \tag{3.2}\\
& \quad \leq 16 h M_{T}^{2},
\end{align*}
$$

for all s, t, α and $\beta \in[0, T]$ such that $s \leq t$ and $\alpha \leq \beta$.
Proof. By Lemma 2, we have

$$
\begin{align*}
& \left\|T(m h) x-T_{h}(\sigma) x\right\|^{2} \geq\left\|T(n h) x-T_{h}(\sigma) x\right\|^{2} \\
& \quad+2 \sum_{i=m+1}^{n}\left\langle-A_{h} T_{h}(\sigma) x, T(i h) x-T_{h}(\sigma) x\right\rangle_{s}, \tag{3.3}
\end{align*}
$$

for $\sigma \in[0, T]$ and integers $n \geq m \geq 0$. Since (2.7) holds true with $z=x$, integrating (3.3) with respect to σ, we have

$$
\begin{aligned}
& 0 \geq \int_{\alpha}^{\beta}\left\{\left\|T(n h) x-T_{h}(\sigma) x\right\|^{2}-\left\|T(m h) x-T_{h}(\sigma) x\right\|^{2}\right\} d \sigma \\
& \quad+\sum_{i=m+1}^{n} h\left\{\left\|T(i h) x-T_{h}(\beta) x\right\|^{2}-\left\|T(i h) x-T_{h}(\alpha) x\right\|^{2}\right\} .
\end{aligned}
$$

Put $n=[t / h]$ and $m=[s / h]$. Then, on account of (3.1), we have (3.2).
Q.E.D.

Now, we set $\phi_{h}(\tau, \sigma): R \times R \rightarrow R^{+}$by

$$
\phi_{h}(\tau, \sigma)= \begin{cases}\left\|T([\tau / h] h) x-T_{h}(\sigma) x\right\|^{2}, & \text { for }(\tau, \sigma) \in[0, T] \times[0, T] \\ 0, & \text { otherwise } .\end{cases}
$$

Let ρ be a molifier such that $\rho \in \mathscr{D}(R), \rho \geq 0, \operatorname{supp}[\rho] \subset[-1,1]$ and

$$
\int_{R} \rho(\xi) d \xi=1
$$

And we set $\rho_{s}(\xi, \eta)=\varepsilon^{-2} \rho(\xi / \varepsilon) \rho(\eta / \varepsilon)$ for $\varepsilon>0$. Then we define the regularization of ϕ_{h} by

$$
\begin{equation*}
\phi_{h, s}(\tau, \sigma)=\left(\rho_{s} * \phi_{h}\right)(\tau, \sigma)=\iint_{R \times R} \rho_{s}(\xi, \eta) \phi_{h}(\tau-\xi, \sigma-\eta) d \xi d \eta . \tag{3.4}
\end{equation*}
$$

By Lemma 4, we have immediately

$$
\begin{aligned}
& \int_{\alpha}^{\beta}\left\{\phi_{h, \mathrm{~s}}(t, \sigma)-\phi_{h, s}(s, \sigma)\right\} d \sigma \\
& \quad+\int_{s}^{t}\left\{\phi_{h, s}(\tau, \beta)-\phi_{h, s}(\tau, \alpha)\right\} d \tau \leq 16 h M_{T}^{2}
\end{aligned}
$$

or

$$
\begin{equation*}
\int_{\alpha}^{\beta} \int_{s}^{t}\left\{\frac{\partial}{\partial \tau} \phi_{h, \varepsilon}(\tau, \sigma)+\frac{\partial}{\partial \sigma} \phi_{h, \varepsilon}(\tau, \sigma)\right\} d \tau d \sigma \leq 16 h M_{T}^{2} \tag{3.5}
\end{equation*}
$$

for s, t, α and $\beta \in[\varepsilon, T-\varepsilon], s \leq t, \alpha \leq \beta$.
We set $\omega_{0}(r)$ as in the proof of Lemma 3 and set

$$
\omega_{1}(r)=\sup \left\{\left\|T_{h}(t) x-x\right\| ; 0 \leq t \leq r, 0 \leq h \leq r\right\} .
$$

Lemma 3 means that $\omega_{1}(r) \rightarrow 0$ as $r \rightarrow 0+$. Also we note that

$$
\begin{align*}
& \|T([t / h] h) x-T([s / h] h) x\| \leq 3 \omega_{0}(\varepsilon), \tag{3.6}\\
& \left\|T_{h}(t) x-T_{h}(s) x\right\| \leq \omega_{1}(\varepsilon),
\end{align*}
$$

for $0<h \leq \varepsilon$ and $t, s \geq 0$ such that $|t-s| \leq \varepsilon$.
Lemma 5. Let ε and δ be sufficiently small. Then we have the following estimate:

$$
\begin{align*}
& \phi_{h}(t, t)-\phi_{h}(s, s) \leq 8 M_{T}\left(3 \omega_{0}(\varepsilon)+\omega_{1}(\varepsilon)\right) \\
& \quad+T\left(M_{\varepsilon, T} \delta+16 h M_{T}^{2} \delta^{-2}\right), \tag{3.7}
\end{align*}
$$

for $0<h \leq \min \left(\varepsilon, h_{0}\right)$ and $s, t \in[\varepsilon, T-\varepsilon-\delta], s \leq t$, where $M_{s, T}$ is a nonnegative constant, independent of h.

Proof. We follow the argument by T. Takahashi in [11]. (See also Ph. Bénilan [1].) For $r \in[\varepsilon, T-\varepsilon-\delta]$, we set

$$
\begin{aligned}
I(r)=\int_{r}^{r+\delta} \int_{r}^{r+\delta} \delta^{-2}\{ & \left\{\frac{\partial}{\partial \tau} \phi_{h, \mathrm{~s}}(\tau, \sigma)-\frac{\partial}{\partial \tau} \phi_{h, \mathrm{~s}}(r, r)\right. \\
& \left.+\frac{\partial}{\partial \sigma} \phi_{h, 6}(\tau, \sigma)-\frac{\partial}{\partial \sigma} \phi_{h, 6}(r, r)\right\} d \tau d \sigma .
\end{aligned}
$$

Taking account of (3.1), we see that all partial derivatives of $\phi_{h, s}$ up to the second order are uniformly bounded on $[0, T] \times[0, T]$ with respect to $0<h \leq h_{0}$. Hence, for some $M_{\varepsilon, T}>0$ we have

$$
|I(r)| \leq M_{\varepsilon, T^{T}} \delta \quad \text { for } r \in[\varepsilon, T-\varepsilon-\delta],
$$

by mean value theorem. Combing this with (3.5), we have

$$
\begin{align*}
\frac{d}{d r} \phi_{h, \mathrm{e}}(r, r) & =\frac{\partial}{\partial \tau} \phi_{h, \varepsilon}(r, r)+\frac{\partial}{\partial \sigma} \phi_{h, \mathrm{e}}(r, r) \tag{3.8}\\
& \leq M_{\varepsilon, T} \delta+16 h M_{T}^{2} \delta^{-2} \quad \text { for } r \in[\varepsilon, T-\varepsilon-\delta]
\end{align*}
$$

Thus, integrating (3.8) with respect to r, we obtain

$$
\begin{equation*}
\phi_{h, \varsigma}(t, t)-\phi_{h, \epsilon}(s, s) \leq T\left(M_{\iota, T} \delta+16 h M_{T}^{2} \delta^{-2}\right) \tag{3.9}
\end{equation*}
$$

for $s, t \in[\varepsilon, T-\varepsilon-\delta], s \leq t$.
On the other hand, we have

$$
\begin{aligned}
& \left|\phi_{h, \mathrm{~s}}(r, r)-\phi_{h}(r, r)\right| \\
& \quad \leq \iint_{R \times R} \rho_{\mathrm{s}}(\xi, \eta)\left|\phi_{h}(r-\xi, r-\eta)-\phi_{h}(r, r)\right| d \xi d \eta
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\phi_{h}(r-\xi, r-\eta)-\phi_{h}(r, r)\right| \\
& \quad \leq 4 M_{T}\left(\|T([(r-\xi) / h] h) x-T([r / h] h) x\|+\left\|T_{h}(r-\eta) x-T_{h}(r) x\right\|\right) .
\end{aligned}
$$

Therefore, we have by (3.8)

$$
\begin{equation*}
\left|\phi_{h, \varepsilon}(r, r)-\phi_{h}(r, r)\right| \leq 4 M_{T}\left(3 \omega_{0}(\varepsilon)+\omega_{1}(\varepsilon)\right) \tag{3.10}
\end{equation*}
$$

for $0<h \leq \min \left(\varepsilon, h_{0}\right)$ and $r \in[\varepsilon, T-\varepsilon]$.
Combining (3.10) with (3.9), we have (3.7).
Q.E.D.

Now we can complete the proof of Theorem. Note that

$$
\begin{aligned}
\phi_{h}(\varepsilon, \varepsilon) & \leq 2 M_{T}\left(\|T([\varepsilon / h] h) x-x\|+\left\|x-T_{h}(\varepsilon) x\right\|\right) \\
& \leq 2 M_{T}\left(2 \omega_{0}(\varepsilon)+\omega_{1}(\varepsilon)\right)
\end{aligned}
$$

for $0<h \leq \min \left(\varepsilon, h_{0}\right)$. Hence, taking $s=\varepsilon$ in (3.7), we have

$$
\phi_{h}(t, t) \leq 10 M_{T}\left(3 \omega_{0}(\varepsilon)+\omega_{1}(\varepsilon)\right)+T\left(M_{\epsilon, T} \delta+16 h M_{T}^{2} \delta^{-2}\right)
$$

for $0<h \leq \min \left(\varepsilon, h_{0}\right)$ and $t \in[\varepsilon, T-\varepsilon-\delta]$. Since $M_{\varepsilon, T}$ is independent of h and M_{T} is independent of both h and ε, this shows that $\| T([t / h] h) x$ $-T_{h}(t) x \|$ converges to 0 as $h \rightarrow 0+$ for every $t \in(0, T)$ and the convergence is uniform on every compact interval of $(0, T)$. But, taking account of (3.6) again, we see that the convergence holds true for every $t \in[0, T]$ and is uniform on $[0, T]$. Since $\|T(t) x-T([t / h] h) x\| \leq \omega_{0}(h)$, the proof of Theorem is completed.

Remark. After the preparation of this manuscripts, K. Kobayashi [7] proved Theorem by using the following estimate (see Appendix in [10]) :

$$
\left\|T_{h}(t) x-T([t / h] h) x\right\| \leq(\sqrt{t h}+h)\left\|A_{h} x\right\| \quad \text { for } x \in X_{0} .
$$

Acknowledgement. The author would like to express his hearty thanks to Prof. I. Miyadera for valuable advices and personal encouragement.

References

[1] Ph. Bénilan: Equation d'évolution dans un espace de Banach quelconque et applications. Thèse, Orsay (1972).
[2] H. Brezis and A. Pazy: Semigroups of nonlinear contractions on convex sets. J. Funct. Anal., 6, 237-281 (1970).
[3] M. Crandall and T. Liggett: Generation of semi-groups of nonlinear transformations in general Banach spaces. Amer. J. Math., 93, 265-298 (1971). (1971).
[4] J. Dorroch: Some classes of semigroups of nonlinear transformations and their generators. J. Math. Soc. Japan, 20, 437-455 (1968).
[5] E. Hille and R. S. Phillips: Functional Analysis and Semigroups. Amer. Math. Soc. Collop. Publ., 31 (1957).
[6] T. Kato: Note on the differentiability of nonlinear semigroups. Proc. Symp. Pure Math., 16, AMS Providence R. I., pp. 91-94.
[7] K. Kobayashi: Note on approximation of nonlinear semigroups (to appear).
[8] I. Miyadera: Note on nonlinear contraction semi-groups. Proc. Amer. Math. Soc., 21, 219-225 (1969).
[9] -: Some remarks on semi-groups of nonlinear operators. Tôhoku Math. J., 23, 245-258 (1971).
[10] I. Miyadera and S. Oharu: Approximation of semi-groups of nonlinear operators. Tôhoku Math. J., 22, 24-47 (1970).
[11] T. Takahashi: Convergence of difference approximation of nonlinear evolution equations and generation of semigroups (to appear).

