163. Kummer Surfaces in Characteristic 2

By Tetsuji Shioda

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko Kodaira, M. J. A., Nov. 12, 1974)

§ 0. Introduction. Let A be an abelian surface (i.e. abelian variety of dim 2) defined over a field of characteristic p (p=0 or a prime number). Denoting by ι the inversion of A ($\iota(u) = -u, u \in A$), we consider the quotient surface A/ι , which has only isolated singularities corresponding to the points of order 2 of A. When $p \neq 2$, A/ι has 16 ordinary double points and by blowing up these points, we get a K3 surface (i.e. regular surface with a trivial canonical divisor), called the Kummer surface of A.

When p=2, the situation is a little different. The number of singular points of A/ι is smaller (4, 2 or 1), but they are more complicated singularities. In this note, we consider the case where $A=E\times E'$ is a product of elliptic curves, and instead of directly looking at the singularities of A/ι and their resolution, we study the non-singular elliptic surface (Kodaira-Néron model) of the fibration $A/\iota \rightarrow E/\iota = P^1$, induced by the projection $A \rightarrow E$. We define the Kummer surface of A, Km(A), to be this non-singular elliptic surface, birationally equivalent to A/ι . Rather unexpectedly, we have

Proposition 1. Assume p=2 and let $A=E\times E'$. Then

- (i) Km(A) (and hence A/ι) is a rational surface, if E and E' are supersingular elliptic curves.
- (ii) Km(A) is a K3 surface in all other cases.

Proposition 2. The Picard number ρ of Km(A) in the case (ii) is given as follows:

$$\rho = \begin{cases} 18 & \text{if } E \not\sim E', \\ 19 & \text{if } E \sim E', \text{ } End(E) = Z, \\ 20 & \text{if } E \sim E', \text{ } End(E) \neq Z. \end{cases}$$

Here "~" indicates isogeny. Note in particular that the K3 surfaces Km(A) in (ii) cannot be supersingular in the sense of M. Artin [1], nor unirational (cf. [9]). It will be interesting to study the singularities of A/ι and to obtain its non-singular model for any abelian surface (or variety) in characteristic 2. For example, we can ask: (i) Is A/ι rational if A has no point of exact order 2? (In this case, A/ι is unirational.) (ii) Is A/ι birationally equivalent to a K3 surface if A has at least one point of exact order 2? We shall consider these questions in some occasion.

No. 9]

It is a pleasure to thank Prof. Y. Ihara for many valuable communications.

§ 1. Elliptic curves in characteristic 2. We fix an algebraically closed field k of characteristic p=2. For each $j \in k$, we denote by E_j an elliptic curve with the absolute invariant j. Explicitly E_j can be defined by the equation (cf. [3]):

$$(1) y^2 + axy + cy = x^3 + bx,$$

where

(2)
$$\begin{cases} a=b=0, c=1, & \text{if } j=0\\ a=j^{-1/6}, b=aj^{-1}, c=0 & \text{if } j\neq 0. \end{cases}$$

We choose the unique point at infinity as the origin of the group law on E_j . The inversion ι of E_j is then expressed by

 $(3) \qquad (x, y) \rightarrow (x, y + ax + c).$

It follows that E_j is supersingular (i.e. no point of exact order p=2) if and only if j=0. Note also that $(x, y) \rightarrow x$ induces the isomorphism $E_j/\iota \simeq \mathbf{P}^1$.

§ 2. Kummer surfaces. Let us consider the abelian surface (4) $A = E_j \times E_{j'}$,

in which $E_{j'}$ is defined by the equation (1) with a, b, c replaced by a', b', c'. Denoting the coordinates of the first and second factor of A by (x, y) and (x', y'), we identify the function field k(A) of A with k(x, y, x', y'). The function field of A/ι is isomorphic to the subfield of k(A) of those elements invariant under

(5) $(x, y, x', y') \rightarrow (x, y + ax + c, x', y' + a'x' + c').$ Putting

(6)
$$z = (ax+c)y' - (a'x'+c')y,$$

we have

(7) $k(A/\iota) = k(x, x', z)$

with the relation

(8) $z^2 - (ax+c)(a'x'+c')z = (ax+c)^2(x'^3+b'x') - (a'x'+c')^2(x^3+bx).$

Let $f_1: A/\iota \rightarrow E_j/\iota = P^1$ be the morphism induced by the projection $A \rightarrow E_j$. We put

(9)
$$\Sigma = \begin{cases} \{\infty\} & (j=0) \\ \{\infty,0\} & (j\neq0). \end{cases}$$

For each $x \in \mathbf{P}^1 - \Sigma$, the fibre $f_1^{-1}(x)$ is an elliptic curve, defined by the equation (8) over the field k(x). By the method of Kodaira-Néron ([4], [5]), we can replace the fibre $f_1^{-1}(v)$ for $v \in \Sigma$ by a suitable configuration of curves C_v so that we obtain a non-singular elliptic surface $f: X \to \mathbf{P}^1$ with $f^{-1}(v) = C_v$. The type of singular fibres C_v , which depends on $\{j, j'\}$, will be explicitly given in §4. This surface X will be called the Kummer surface, Km(A), of $A = E_j \times E_{j'}$ (cf. §6). Note that $f: X \to \mathbf{P}^1$ admits a section; in fact, the map $x \to (x, o')$ of E_j into A induces such a section $(o' = \text{the origin of } E_{j'})$.

§ 3. Generalities on elliptic surfaces. We recall here some facts about elliptic surfaces (in any char. p). Let $f: X \rightarrow P^1$ be a non-singular elliptic surface over P^1 such that

- (i) no fibre contains an exceptional curve of the first kind,
- (ii) f admits a section, and

(iii) the set $\Sigma = \{v \in \mathbf{P}^1 | f^{-1}(v) \neq \text{elliptic curve} \}$ is non-empty.

For $v \in \Sigma$, let m_v denote the number of irreducible components in the fibre $f^{-1}(v)$, and let ord_v denote the order of the discriminant of the minimal Weierstrass equation at v (cf. [6]). Moreover let c_2 (or ρ) be the Euler number (or the Picard number) of X. Then we have

(10)
$$c_2 = \sum_v \operatorname{ord}_v$$
 (cf. [4], [6])

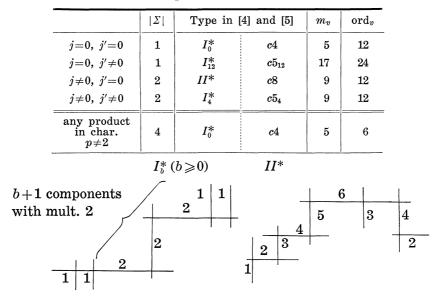
(11)
$$\rho = r + 2 + \sum_{v} (m_v - 1)$$
 (cf. [6], [7])

where r is the rank of group of rational points of the generic fibre. Furthermore we have the following criteria:

(12) $X: rational \iff c_2 = 12,$

The proof of (12), (13) depends on the fact that the canonical divisor of X is induced by a certain divisor of P^1 of degree $-2+c_2/12$ (cf. [4], [2]). In addition, we use the Castelnuovo's criterion of rationality for (12).

§ 4. Singular fibres of Kummer surfaces. We go back to the situation in §2 (p=2). Let X=Km(A) be the Kummer surface of $A=E_j$ $\times E_{j'}$, together with the morphism $f: X \rightarrow P^1$ coming from the projection $A \rightarrow E_j$. The number and type of singular fibres C_v ($v \in \Sigma$) are summarized in the following table. (The last line of the table for $p \neq 2$ is added for the sake of comparison.)



In order to verify this table, we rewrite in each case the equation (8) over k(x) into a suitable Weierstrass form, and compare with the classification of singular fibres in [5]. We omit the computation.

§ 5. Proof of Propositions 1, 2. From the above table, we have

(14)
$$\sum_{v} \operatorname{ord}_{v} = \begin{cases} 12 & \text{if } j = j' = 0 \\ 24 & \text{otherwise.} \end{cases}$$

This proves Proposition 1 in view of the criteria (12), (13). For the part (i), i.e. for the rationality of A/ι with $A=E_0\times E_0$, we can also give a simple direct proof, avoiding such a deep criterion as (12). In fact, the equation (8) for the case j=j'=0 reads

(15)
$$z^2 - z = x^3 - x^{\prime 3}$$
.
Putting $x' = x + s$, we have
(16) $z^2 - z + s(x^2 + sx + s^2) = 0$.

Regarded as a quadratic equation in z and x with coefficients in the field k(s), (16) has a rational point $(z, x) = (0, \omega s)$ where ω is a primitive cubic root of 1. If we put $t=z/(x-\omega s)$, (16) is rewritten as

$$(t^2+s)x = t + \omega t^2 s + \omega^2 s^2$$

Hence we have by (7)

(17) $k(A/\iota) = k(x, x', z) = k(s, t),$

which shows the rationality of A/ι when j=j'=0. For the Picard number $\rho(X)$ of X=Km(A), $A=E_j\times E_{j'}$, we have

(cf. [8])

(18)
$$\rho(X) = \rho(A/\iota) + \sum_{v} (m_v - 1)$$
$$= \operatorname{rank} \operatorname{Hom} (E_j, E_{j'}) + 2 + \sum_{v} (m_v - 1)$$

Therefore Proposition 2 follows immediately from the table of § 4. By the way, comparing (18) with (11), we see that the rank r in (11) is also given by

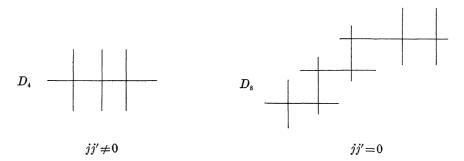
(19)
$$r = \operatorname{rank} \operatorname{Hom} (E_j, E_{j'}).$$

§ 6. Remarks. (a) Let $A = E_j \times E_{j'}$ with $(j, j') \neq (0, 0)$. Suppose we have another decomposition of A:

(20) $A \simeq E_{j_1} \times E_{j'_1}$ (e.g. $j_1 = j', j'_1 = j$).

Let X (resp. X_1) denote the non-singular elliptic surface over P^1 associated with $A/\iota \rightarrow E_j/\iota$ (resp. $A/\iota \rightarrow E_{j_1}/\iota$). Then both X and X_1 are K3 surfaces by Proposition 1 (ii), birationally equivalent to A/ι . By the minimality of a K3 surface, X and X_1 are naturally isomorphic. Thus the definition (§ 2) of the Kummer surface of A does not depend on the way how A decomposes as a product of elliptic curves.

(b) The results in §4 on singular fibres suggest that each singular point of A/ι for $A = E_j \times E_{j'}$ (j, j') not both zero) has the minimal resolution consisting of the following configuration of non-singular rational curves:



This latter fact has recently been shown by M. Artin [10].

References

- [1] M. Artin: Supersingular K3 surfaces (to appear).
- [2] E. Bombieri: Remarks on elliptic surfaces (char $k \neq 0$). Notes.
- [3] M. Deuring: Invarianten und Normalformen elliptischen Funktionenkörper. Math. Zeitschr., 47, 47-56 (1941).
- [4] K. Kodaira: On compact analytic surfaces. II, III. Ann. of Math., 77, 563-626 (1963); 78, 1-40 (1963).
- [5] A. Néron: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Publ. I. H. E. S., No. 21 (1964).
- [6] A. P. Ogg: Elliptic curves and wild ramification. Amer. J. Math., 89, 1-21 (1967).
- [7] T. Shioda: On elliptic modular surfaces. J. Math. Soc. Japan, 24, 20-59 (1972).
- [8] ——: Algebraic cycles on certain K3 surfaces in characteristic p. Proc. Int. Conf. on Manifolds (Tokyo, 1973).
- [9] ——: An example of unirational surfaces in characteristic p (to appear).
- [10] M. Artin: Wild Z/2 actions in dimension two (to appear).