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1. Introduction. In the previous note [2] we constructed the

fundamental solution of iu3-+ 1/21, where A is the Laplace operator

associated with a Riemannian metric dsZ= g(x)dxdx in R satis-
fying some conditions. There we made use of discussions of classical
orbits in the phase space. In this note discussing in the spacetime, we

shall construct the fundamental solution of ,i+A, ,>0. This will

be closer to the original Feynman’s idea [1]. Assumptions will be
found ia 2 and results will be ound i 4. In 3 we shall construct
parametrix. The outline of proof will be given in 5. The main
Lemma proof o which is too long to be presented in this short note
will be proved in the subsequent paper [3].

2. Assumptions. Let [x--yl be the Euclidean distance from y
to x and r(x, y) be the geodesic distance from y to x. Our assumptions
are the ollowing ones"

( A-I ) for any two points x, y in R, there exists unique geodesic
joining x to y.
(A-II) the metric ds coincides with the Euclidean metric outside
compact set K.
(A-III) there exists a constant C>0 such that
( 1 ) Igrad (r(x, y)-r(x, z))l C ]y-z.
(A-IV) or any multi-indices a with [a[2, there exists a constant
C0 such that

( 2 ) (r(x, y)--r(x, z)) C ly-z[.

3. Parametrix. We make use o the parametrix of the form
( 3 ) E(t, x, y)=(u/4zti)/ exp (i,r(x, y)/4t)e(t, x, y),

( 4 ) e(t, x, y)= (it/,)e(x, y).

If we use geodesic polar coordinates with center at y, the function
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e(x, y) is determined in the following manner;

-r (1 d log/-+j+i)e+a=Ae,(5) r e++ r d---
e_- 0, eo(y, y)= 1.

The solution ot these equations are
( 6 ) eo(X, y) (g(x) / (g(y))/4,

( 7 ) e(x, y)--eo(X, y)r(x, y)- Ii
(’) r(z, Y)-Aze_(z, y)dr(z, y).

eo(z, y)
Integral is taken along the geodesic joining x to y. From this con-
struction we have

(8) (i-t + A)E(t’ x’ Y)

=--(,/4uit)l/(it/,) exp (i,r(x, y)/4t)Ae(x, y).
Since eo(x, y)=g(y)-m if x K and g(x)1/ if y K, we have, for any
multi-indices a, ,
(9) ,y) <_C

with ]=0. Making use of (7) we see easily that (9) holds for any ]=0,
1, ...,N.

4. Results. Let us define an integral transformation E(t) by

(10) E(t)f(x)=[ EN(t, x, y)f(y)/-)dy.
J

Then our results are the following theorems.
Theorem I. E(t) is a bounded linear transformation in

L(R, /-dx).
Theorem II (cf. Feyman [1]).

(11) lira IIE(t/k)E(t/k). .E(t/k)--exp (i,-tA)l]=O,

where is the operator norm in L(Rn, @dx) and exp (iu-tA) is the
one parameter group of unitary operators whose generator is i,-A.

(Ct. Stone [4].)
5. Outline of the proof. We introduce another linear integral

transformation F(t) as the following;
(12) F(t)f(x)

_.[,Ae(x’ y) exp (i,r(x, y) / 4t)f(y)/-gy)dy.(/4it)l/2n(t / i)

Our fundamental lemma is
Lemma. Let a(x, y) be a function in C(R R) which satisfies

the same estimate as (9). Set

(13) Af(x)-[a(x,_ y) exp (i2r(x, y))f(y)dy, 2>0.

Then there exists a constant C>0 independent of 2 and f such that we
have
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(14) 11Afll C-’ f
for any f in, C(R). Here 11 is the norm in L2(Rn, /-dx).

Theorem I is an immediate consequence of Lemma. We again
apply this lemma and obtain estimates of the norm of the operator
F(t), that is,
(15) IIFN(t)II<=C It/,I.
We denote U(t)-exp (i,-tA). Then the difference R(t)=E(t)--U(t)
can be written as

(16) R() I:U(-- s)F(s)ds.
The norm of it is majorized as
(17) IIR(t)IIC Itl,l Itl.
The k-products o E(t/k) turns out to be

E(t/k)E(t/ k). E(t/ k)
O8)

(U(t /) R(t/ )) (U(t ) R(t )).
Since U(t/k) is unitary, we obtain

(1+ IlR(t/)1)- 1.
This tends to 0 as goes to if N 1. Our theorems have been roved
u to the proof of our lemma which will be given in the subsequen
note [g].
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