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1. By a right S-system Mg over a semigroup S we mean a set M
together with a mapping (z, a)—xa of M xS into M satisfying
x(ab) = (xa)d
forallxe M and a,beS. A non-empty subset N of a right S-system
Mg is called an S-subsystem of Mg if NSCN. An S-subsystem N of a
right S-system Mg is called R-pure in S if
NNMa=Na
for all ¢ S. Since the inclusion D is true for every S-subsystem N
of Mg, the essential requirement is
NNMaZNa
for alae S. A right S-system M is called R*-pure if every S-sub-
system of My is R-pure in S.

In [3] the author proved that for a semigroup S with an identity
the following conditions are equivalent:

1) S is regular.

(2) Every unital right S-system Mg is R*-pure.

3) S is R*-pure.

In this note we shall give another properties of pure S-subsystems
of a right S-system M over a semigroup S. For the terminology not
defined here we refer to the book by A. H. Clifford and G. B. Preston [1].

2. A subsemigroup B of a semigroup S is called a bi-ideal of S
if BSBCB. We denote by [b] the principal bi-ideal of a semigroup S
generated by b in S, that is,

[b]=bUb*U bSb.

First we give the following.

Theorem 1. For an S-subsystem N of a right S-system Mg over
a semigroup S the following conditions are equivalent :

(1) N is R-purein S.

(2) NNMB=NB for all bi-ideals B of S.

B) NNM[b]=NIb] forallbeS.

Proof. First we assume that N is R-pure in S. Let B be any
bi-ideal of S and p=qb (peN,qe M,bec B) any element of NNMB.
Then we have

p=qgbe NNMb=NbCNB
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and so we have
NNMBCNB.
Since the converse inclusion always holds, we have
NNMB=NB
for all bi-ideals B of S. Therefore we obtain that (1) implies (2). It
is clear that (2) implies (3). We assume that (3) holds. Let a be any
element of S and p=qa (pe N,qec M) any element of NNMa. Then
we have
p=qa e NN M[a]=Nl[a]
=N(aUa*UaSa)
=NaUNa?U N(aSa)
=NaUNa)a U (NaS)a
CNaUNaUNa
=Na
and so we have
NNMaZNa
for all e e S. Thus we obtain that N is R-pure in S and that (8) im-
plies (1). This completes the proof of the theorem.
A right ideal A of a semigroup S is called R-pure in S if
ANSa=Aa
forallae S. A semigroup S is called R*-pure if every right ideal of
S is R-pure in S.

Since any right ideal of a semigroup S is an S-subsystem of a right
S-system Sg, the following corollary is immediate from the above theo-
rem.

Corollary 2. For a right ideal A of a semigroup S the following
conditions are equivalent:

1) A is R-pure in S.

@2 ANSB=AB for all bi-ideals B of S.

B) ANS[bl=A[b] forall beS.

We denote by [a], the principal right ideal of a semigroup S gen-
erated by a in S, that is,

[al,=aUasS.

Corollary 3. For a semigroup S the following conditions are
equivalent :

@) S is R*-pure.

2 ANSB=AB for all right ideals A and for all bi-ideals
B of S.

B) ANS[bl=A[b] for all right ideals A and for all b e S.

@ [a]l,NSb=[al,b forall a, beS.

®) [al,NSB=Ia],B for all a ¢ S and for all bi-ideals B of S.

®) [el,NS[bl=Ilal[b] foralla,beS.
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Proof. Itfollowsfrom Corollary 2that (1) ~(3) are equivalent, and
that (4) ~(6) are equivalent. It is clear that (1) implies (4). We as-
sume that (4) holds. Let A be any right ideal of S and b any element
of S. Let a=sb(aec A,seS) beanyelement of ANSb. Then we have

a=sbelal,NSb=[a],b CAbD
and so we have
ANSbCAb
for all be S. This means that A is R-pure in S. Therefore we ob-
tain that (4) implies (1).

3. A semigroup S is called regular if, for any element a ¢ S, there
exists an element x in S such that a=axa.

The equivalence of (1) and (2) in the next theorem is due to the
author ([3] Theorem 12). The rest of the proof can be easily proved.

Theorem 4. For an S-subsystem N of a right S-system Mg over
a regular semigroup S the following conditions are equivalent :

(1) N is R-purein S.

(2) NNMe=Ne for all idempotents ec S.

(B) NNM[el=NIel for all idempotents e e S.

Corollary 5. For a right ideal A of a regular semigroup S the
following conditions are equivalent :

(1) A is R-purein S.

(2) ANSe=Ae for all idempotents e c S.

3) ANSlel=Alel for all idempotents ec S.

4. A right S-system My is called unital if S contains an identity
1 such that 1=« for all x ¢ M. A right S-system My is called torsion
free if xd=yd with d cancellable in S implies =y, and is called divi-
sible if Md=M for every cancellable element d € S.

Theorem 6. Let Mg be a divisible torsion free right S-system
over a semigroup S. Then any R-pure S-subsystem N of My is divi-
sible.

Proof. Let z be any element of N. Then, since M is divisible,
there exists an element y in M such that x=yd for every cancellable
element de S. Since N is R-pure in S,

rx=yde NNMd=Nd.
This implies that there exists an element 2z in N such that

yd=zd.
Since My is torsion free, we have
Yy=zeN,
and so we have
NCNd.

Since the converse inclusion always holds, we have
N=Nd
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for every cancellable element d € S. Therefore N is divisible.

Theorem 7. Any S-subsystem N of a unital right S-system Mg
over a group S is R-pure and divisible.

Proof. For any element a ¢ S, we have

N=N1=N(a"'a)=(Na HaZNaCN,

and so we have

N=Na
for all a ¢ S. This holds for all cancellable elements a ¢ S. Thus N is
divisible. On the other hand, we have

NNMa=NaNMa=Na

for all aeS. Therefore N is R-pure in S. This completes the proof
of the theorem.

5. A semigroup S is called normal if aS==S8a for all a €S ([4]).
Then we have the following.

Theorem 8. Let Mg be a right S-system over a normal semigroup
S. Then the mintmal S-subsystem N of Mg is R-pure and divisible.

Proof. For any element a of S, it follows that

NaCN.
Since S is normal, we have

(Na)S=N(aS)=N(Sa)=(NS)aZ Na.

This means that Na is an S-subsystem of Ms. Then it follows from
this and the minimality of N that

Na=N
for all e S. Then N is R-pure in S and divisible (see the proof of
Theorem 7). This completes the proof of the theorem.

Let A be any right ideal of a normal semigroup S. Then, as is
easily seen,

AS=S8SA
holds. Thus we have the following lemma.

Lemma 9. Any one-sided ideal of a normal semigroup is two-
stded.

The following corollary is immediate from Theorem 8 and Lemma
9.

Corollary 10. The minimal right (left, two-sided) ideal of a nor-
mal semigroup is a group.

6. A semigroup S is called R-pure-free if it does not properly
contain any R-pure right ideal. In this section we give a non-trivial
class of R-pure-free semigroups.

A commutative semigroup S is called archimedean if, for any ele-
ments a and b of S, there exist elements # and ¥ in S and positive inte-
gers m and n such that

a™=x2b and b*=ya.



No. 9] Pure Subsystems 687

By an N-semigroup we mean a commutative cancellative archimedean
semigroup without idempotents. Then we have the following.

Theorem 11. Any N-semigroup is R-pure-free.

Proof. Let A be any R-pure right ideal of an N-semigroup S, and
let @ and s be respectively any elements of A and S. Since S is archi-
medean, there exist an element £ in S and a positive integer m such
that

o™ =2s.
Since A is R-pure in S, we have
omr=sxe ANSx=Aux.
This implies that there exists an element b in A such that

sx=>bux.
Since S is cancellative, we have
s=beA
and so we have
SCA.
Therefore we obtain that
S=A

and that S is R-pure-free. This completes the proof of the theorem.
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