190. Characters of Finite Groups with Split (B, N).Pairs

By Sôhei Nozawa
Department of Mathematics, University of Tokyo
(Comm. by Kenjiro Shoda, M. J. A., Dec. 12, 1974)

§ 1. In our previous paper [4], we discussed the irreducibility of characters of the finite general unitary $\operatorname{group} \operatorname{GU}\left(n, q^{2}\right)$ induced by those of a direct product of the finite general linear group $G L\left(k, q^{2}\right)$ and $G U\left(n-2 k, q^{2}\right)$. Recently we were suggested by Professor C. W. Curtis that one would be able to get a similar result for finite groups with split (B, N)-pairs. Using the results of intersections of parabolic subgroups in a paper by Curtis [2], we could generalize the result in our paper [4]. Note that this is a special case of Theorem 3.5 due to Curtis [2].

I wish to thank Professor Curtis for his suggestion to me on this problem and also for the generous use of his preprint [2].

By a character of a group, we mean a rational integral combination of its complex irreducible characters. Standard notations for finite group theory and character theory will be used.

Let G be a finite group with a split (B, N)-pair of characteristic p, for some prime p, and Coxeter system (W, R). Let P_{J} be a standard maximal parabolic subgroup of G, L_{J} the standard Levi factor of P_{J} for some $J \subseteq R$. Then P_{J} has a semi-direct decomposition $P_{J}=L_{J} V_{J}$ of $V_{J}=O_{p}\left(P_{J}\right)$ by L_{J}, which we call the Levi decomposition of P_{J}. If χ is an irreducible character of L_{J}, then we can extend χ to an irreducible character $\tilde{\chi}$ of P_{J}, by putting $\tilde{\chi}(l v)=\chi(l)$ for $l \in L_{J}, v \in V_{J}$. We shall now prove the following

Theorem. Let $W_{J, J}$ be the set of distinguished $\left(W_{J}, W_{J}\right)$-double coset representatives of W. Assume that (i) χ is not a self-conjugate and (ii) no kernel of irreducible constituents of the restriction of χ to $L_{J} \cap{ }^{w} P_{J}$ contains $L_{J} \cap{ }^{w} V_{J}$ whenever $L_{J} \not{ }^{w} L_{J}$ for $w \in W_{J, J}$. Then the character $\tilde{\chi}^{G}$ of G induced by $\tilde{\chi}$ is irreducible.

In order to prove this theorem, we must calculate the scalar product $\left(\tilde{\chi}^{G}, \tilde{\chi}^{G}\right)_{G}$. To do this, it will be necessary to derive some informations of parabolic subgroups. In §2, we shall state several results about intersections of parabolic subgroups due to Curtis [2]. The theorem is proved in § 3. The proof is a simple combination of lemmas in § 2 , § 3 .
§ 2. Let (G, B, N, W, R) be as in $\S 1$. Then W is isomorphic to the Weyl group $W(\Delta)$ of a uniquely determined root system Δ, such
that the set R corresponds to a set of fundamental reflections of $W(\Delta)$ with respect to a set of simple roots $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ in Δ. We identify W with $W(\Delta)$ and R with the set of fundamental reflections $\left\{r_{1}, \cdots, r_{n}\right\}$. We denote by $l(w)$ the length of w as an element of (W, R). The set of positive (resp. negative) roots in Δ with respect to Π is denoted by Δ_{+} (resp. Δ_{-}). We also put, for $w \in W, \Delta_{w}^{+}=\Delta_{+} \cap w^{-1}\left(\Delta_{+}\right), \Delta_{w}^{-}=\Delta_{+} \cap w^{-1}\left(\Delta_{-}\right)$. Moreover let w_{R} denote the unique element of W such that $w_{R}\left(\Delta_{+}\right)=\Delta_{-}$. Then w_{R} is an involution.

Now put $T=B \cap N$. As is well-known, $T \unlhd N, N / T=W$ and B is a semi-direct product $U T$ of $U=O_{p}(B)$ by T. Let $\left\{n_{w}\right\}$ be a fixed set of coset representatives of T in N, such that $n_{w} T$ corresponds to $w \in W$. We may write $B w B$ for $B n_{w} B$ and write H^{w} (resp. ${ }^{w} H$) instead of $H^{n_{w}}$ (resp. ${ }^{{ }_{w}} H$) for a subgroup H of G normalized by T. We also put $U_{\alpha_{i}}$ $=U \cap U^{w_{R} r_{i}}$. Note that T normalizes the $\left\{U_{\alpha_{i}} ; \alpha_{i} \in \Pi\right\}$, so that W acts on the set of N-conjugates of the $\left\{U_{\alpha_{i}} ; \alpha_{i} \in \Pi\right\}$. Thus we can speak unambiguously of root subgroups U_{α} for $\alpha \in \Delta$ and have the familiar rule ${ }^{w} U_{\alpha}=U_{w(\alpha)}$ for $w \in W, \alpha \in \Delta$. Then U is generated by U_{α} corresponding to $\alpha \in \Delta_{+}$.

For $J \subseteq R$, we denote by W_{J} the parabolic subgroup of W generated by J, and by P_{J} the corresponding standard parabolic subgroup of G, given by $P_{J}=B W_{J} B$. Let Π_{J} be the set of simple roots corresponding to J, Δ_{J} the root system generated by Π_{J} and put $\Delta_{J,+}=\Delta_{+} \cap \Delta_{J}, \Delta_{J,-}$ $=\Delta_{-} \cap \Delta_{J}$. Let w_{J} denote the unique element of W_{J} such that $w_{J}\left(\Delta_{J,+}\right)$ $=\Delta_{J,-}$. Then w_{J} is an involution and $\left(W_{J}, J\right)$ is a Coxeter system.

Next two lemmas are elementary.
Lemma 2.1. Let $w \in W$. Then
(a) $l\left(r_{i} w\right)=l(w) \pm 1$ if $w^{-1}\left(\alpha_{i}\right) \in \Delta_{ \pm}$,
(b) $l\left(w r_{i}\right)=l(w) \pm 1$ if $w\left(\alpha_{i}\right) \in \Delta_{ \pm}$,
(c) $B r_{i} B w B \subseteq B r_{i} w B$ if $l\left(r_{i} w\right) \geq l(w)$,
(d) $B r_{i} B w B \cap B w B \neq \emptyset$ if $l\left(r_{i} w\right) \leq l(w)$.

Proof. See [1].
Lemma 2.2. Let $J \subseteq R$ and $w \in W_{J}$. Then $w\left(\Delta_{+}-\Delta_{J,+}\right) \subseteq \Delta_{+}$. In particular, $\Delta_{w_{J}}^{+}=\Delta_{+}-\Delta_{J,+}$ and $\Delta_{w_{J}}^{-}=\Delta_{J,+}$.

Proof. As $r_{i}\left(\Delta_{+}-\left\{\alpha_{i}\right\}\right)=\Delta_{+}-\left\{\alpha_{i}\right\}$, we have $w\left(\Delta_{+}-\Delta_{J,+}\right) \subseteq \Delta_{+}$. Hence $\Delta_{w}^{-} \subseteq \Delta_{J,+}$. However the definition of w_{J} implies that $\Delta_{w_{J}}^{+} \subseteq \Delta_{+}-\Delta_{J,+}$ and $\Delta_{J,+} \subseteq \Delta_{w_{J}}^{-} . \quad$ This completes the proof.

Let L_{J} be the subgroup of P_{J} generated by T and U_{α} corresponding to $\alpha \in \Delta_{J}$, which is called the standard Levi factor of P_{J} and P_{J} $=L_{J} V_{J}$ be the Levi decomposition of P_{J}. Thus V_{J} is the unique maximal normal p-subgroup of P_{J} generated by U_{α} corresponding to $\alpha \in \Delta_{+}-\Delta_{J,+}, P_{J}=N_{G}\left(V_{J}\right)$ and $\left(L_{J}, B_{J}, N_{J}, W_{J}, J\right)$ is a finite group with a split (B, N)-pair, where $B_{J}=B \cap L_{J}, N_{J}=N \cap L_{J}$. Moreover we have $B=B_{J} V_{J}$.

For $J, J^{\prime} \subseteq R$, let $W_{J, J^{\prime}}$ be the set of distinguished ($W_{J}, W_{J^{\prime}}$)-double coset representatives of W, that is, $w \in W_{J, J^{\prime}}$ satisfies $w(\alpha) \in \Delta_{+}, w^{-1}(\beta)$ $\in \Delta_{+}$for $\alpha \in \Pi_{J^{\prime}}, \beta \in \Pi_{J}$ and w is the element of W of the shortest length in $W_{J} w W_{J^{\prime}}$. We now put $K=J \cap{ }^{w} J^{\prime}$ for a fixed element w of $W_{J, J^{\prime}}$. Note that $G=\underset{w \in W J, J^{\prime}}{ } P_{J} w P_{J^{\prime}}$ (disjoint union) and $W_{J} \cap^{w} W_{J^{\prime}}=W_{K}$. For the rest of this section, these notations will be used.

The following lemma is of importance in the later development.
Lemma 2.3. (a) $\Pi_{J} \cap w\left(\Pi_{J^{\prime}}\right)=\Pi_{K}, \Delta_{J} \cap w\left(\Delta_{J^{\prime}}\right)=\Delta_{K}$,
(b) $\Delta_{J,+} \subseteq w\left(\Delta_{+}\right), w\left(\Delta_{J^{\prime},+}\right) \subseteq \Delta_{+}$,
(c) $\Delta_{K,+}=\Delta_{J,+} \cap w\left(\Delta_{J^{\prime},+}\right)$,
(d) $\Delta_{w_{K}}^{+}-\Delta_{w_{J}}^{+} \subseteq w\left(\Delta_{w_{J}}^{+}\right) \cap \Delta_{J}$.

Proof. (a) $\alpha=w(\beta)$ for $\alpha \in \Pi_{J}, \beta \in \Pi_{J}$, if and only if $w_{\alpha}={ }^{w} w_{\beta} \in W_{J}$ $\cap^{w} W_{J^{\prime}}=W_{K}$. So (a) is clear. (b) As $l(r w)>l(w)$ and $l\left(w r^{\prime}\right)>l(w)$ for $r \in J, r^{\prime} \in J^{\prime}$, we have $w^{-1}\left(\Delta_{J,+}\right) \subseteq \Delta_{+}$and $w\left(\Delta_{J^{\prime},+}\right) \subseteq \Delta_{+}$by Lemma 2.1. (a) and (b) implies that $w\left(\Delta_{+}-\Delta_{J^{\prime},+}\right) \cap \Delta_{K}=\emptyset$. Hence we get (c). (d) If $\alpha \in \Delta_{w_{K}}^{+}-\Delta_{w_{J}}^{+}$, then $\alpha \in \Delta_{J,+} \cap w\left(\Delta_{+}\right)$and $\alpha \oplus \Delta_{K,+}$ by Lemma 2.2. Therefore (c) implies (d) and so the lemma is proved.

We can now derive some consequences for intersections of parabolic subgroups of G, which are based on preceding lemmas.

Lemma 2.4. $P_{K}=\left(P_{J} \cap{ }^{w} P_{J^{\prime}}\right) V_{J}$.
Proof. By Lemma 2.3 (b) we have $B_{J} \leq L_{J} \cap^{w} B \leq P_{J} \cap^{w} P_{J^{\prime}}$ and so $B \leq\left(P_{J} \cap{ }^{w} P_{J_{J}}\right) V_{J}$. Hence $\left(P_{J} \cap{ }^{w} P_{J^{\prime}}\right) V_{J}=P_{I}$ for some $I \subseteq R$. As $l(r w)$ $>l(w)$ for $r \in J$, we have $r B w \subseteq B r w B$ by Lemma 2.1 (c). Then, for $w_{1} \in W_{J}$, it is easy to see that $B w_{1} B w B \subseteq B w_{1} w B$, because $l\left(w_{1} w\right)=l\left(w_{1}\right)$ $+l(w)$, etc. By a similar reason, $B w B w_{2} B \subseteq B w w_{2} B$ for $w_{2} \in W_{J^{\prime}}$. Hence $a w_{1} b w=w c w_{2} d \in B w_{1} w B \cap B w w_{2} B$, where $a, b, c, d \in B, w_{1} \in W_{J}$, $w_{2} \in W_{J}$. Thus $B w_{1} w B \cap B w w_{2} B \neq \emptyset$. Then $w_{1} w=w w_{2}$ and so (P_{J} $\left.\cap{ }^{w} P_{J^{\prime}}\right) V_{J} \leq B\left(W_{J} \cap^{w} W_{J^{\prime}}\right) B=P_{K} . \quad$ The reverse inclusion is clear.

Lemma 2.5. (a) $V_{K}=\left(L_{J} \cap{ }^{w} V_{J}\right) V_{J}$,
(b) $P_{J} \cap^{w} V_{J^{\prime}}=\left(L_{J} \cap^{w} V_{J^{\prime}}\right)\left(V_{J} \cap^{w} V_{J^{\prime}}\right)$,
(c) $V_{J} \cap{ }^{w} P_{J^{\prime}}=\left(V_{J} \cap^{w} L_{J^{\prime}}\right)\left(V_{J} \cap{ }^{w} V_{J^{\prime}}\right)$,
(d) $L_{J} \cap{ }^{w} P_{J}$, is a standard parabolic subgroup of L_{J}; in fact, L_{J} $\cap{ }^{w} P_{J^{\prime}}=P_{K} \cap L_{J}$ and $L_{J} \cap{ }^{w} P_{J^{\prime}}=L_{K}\left(L_{J} \cap{ }^{w} V_{J^{\prime}}\right)$ is a Levi decomposition of $L_{J} \cap{ }^{w} P_{J}$ with $L_{J} \cap^{w} V_{J^{\prime}}=O_{p}\left(L_{J} \cap{ }^{w} P_{J}\right)$.

Proof. (a) As V_{J} is normalized by $L_{J} \cap^{w} V_{J^{\prime}},\left(L_{J} \cap^{w} V_{J^{\prime}}\right) V_{J}$ is a group. ${ }^{w} V_{J^{\prime}}$ is the group generated by ${ }^{w} U_{\alpha}$ corresponding to $\alpha \in U_{w_{J}}^{+}$ and so $V_{K} \leq\left(L_{J} \cap^{w} V_{J^{\prime}}\right) V_{J}$ by Lemma 2.3 (d). Suppose $\alpha \in w\left(\Delta_{w_{J}}^{+}\right) \cap \Delta_{J}$. Then we have $\alpha \in \Delta_{+}, \alpha \notin \Delta_{K}$ by Lemma 2.3(a)(b). Hence we have α $\in \Delta_{w_{K}}^{+}$by Lemma 2.2. Thus $L_{J} \cap{ }^{w} V_{J^{\prime}} \leq V_{K}$. Clearly $V_{J} \leq V_{K}$ by Lemma 2.3 (a). Hence we get (a). (b) As $\left(P_{J} \cap^{w} V_{J}\right) V_{J} \leq U,\left(P_{J} \cap^{w} V_{J}\right) V_{J}$ is a normal p-subgroup of P_{K} and so $\left(P_{J} \cap^{w} V_{J}\right)$) $V_{J} \leq O_{p}\left(P_{K}\right)=V_{K}$. Each element $x \in P_{J} \cap{ }^{w} V_{J}$, is uniquely expressible in the form $x=y z$ with
$y \in L_{J}, z \in V_{J}$. As $x \in V_{K}$, we have $y \in{ }^{w} V_{J}$, by Lemma 2.3 (d). Hence $z=y^{-1} x \in{ }^{w} V_{J^{\prime}}$. Thus $P_{J} \cap^{w} V_{J^{\prime}} \leq\left(L_{J} \cap{ }^{w} V_{J^{\prime}}\right)\left(V_{J} \cap^{w} V_{J^{\prime}}\right)$. The reverse inclusion is clear. (c) As $w^{-1} \in W_{J^{\prime}, J}$, (b) implies (c). (d) It is easy to see that $P_{K} \cap L_{J}$ is a standard parabolic subgroup of L_{J} with Levi factor L_{K} and $V_{K} \cap L_{J}=O_{p}\left(P_{K} \cap L_{J}\right)$. We also have $V_{K} \cap L_{J}=L_{J} \cap{ }^{w} V_{J}$, by (a) and $L_{K} \leq L_{J} \cap^{w} L_{J}$, by Lemma 2.3 (a). Hence $P_{K} \cap L_{J} \leq L_{J} \cap^{w} P_{J^{\prime}}$. On the other hand, $L_{J} \cap{ }^{w} P_{J^{\prime}} \leq P_{K}$ by Lemma 2.4. Therefore $L_{J} \cap{ }^{w} P_{J}$, $=P_{K} \cap L_{J}$. This completes the proof.

Lemma 2.6. The following conditions are equivalent.
(a) $L_{J} \cap^{w} V_{J^{\prime}}=1$.
(b) $L_{J} \leq{ }^{w} L_{J^{\prime}}$.

Proof. If (a) holds, then $V_{K}=V_{J}$ by Lemma 2.5 (a). Hence P_{K} $=P_{J}$ and so $W_{K}=W_{J}$. Thus $\Delta_{K}=\Delta_{J}$. This implies (b) by Lemma 2.3 (a). If (b) holds, then $L_{J} \cap{ }^{w} V_{J^{\prime}} \leq{ }^{w} L_{J^{\prime}} \cap{ }^{w} V_{J^{\prime}}=1$ and the result follows.

Lemma 2.7. $\quad P_{J} \cap{ }^{w} P_{J^{\prime}}=L_{K}\left(L_{J} \cap{ }^{w} V_{J^{\prime}}\right)\left(V_{J} \cap^{w} L_{J^{\prime}}\right)\left(V_{J} \cap^{w} V_{J^{\prime}}\right) . \quad$ In particular, $P_{J} \cap{ }^{w} P_{J^{\prime}}=L_{J}\left(V_{J} \cap{ }^{w} V_{J^{\prime}}\right)$ if $L_{J} \leq{ }^{w} L_{J^{\prime}}$.

Proof. By Lemmas 2.4, 2.5 (a) we have $P_{J} \cap{ }^{w} P_{J^{\prime}} \leq L_{K}\left(L_{J} \cap{ }^{w} V_{J^{\prime}}\right) V_{J}$ and so $P_{J} \cap{ }^{w} P_{J^{\prime}}=L_{K}\left(L_{J} \cap^{w} V_{J^{\prime}}\right)\left(V_{J} \cap{ }^{w} P_{J^{\prime}}\right)$. Hence the first part is proved by Lemma 2.5 (c). Suppose $L_{J} \leq{ }^{w} L_{J^{\prime}}$. By Lemma 2.6 we have $P_{J} \cap{ }^{w} P_{J^{\prime}}=L_{K}\left(V_{J} \cap{ }^{w} V_{J^{\prime}}\right)$. But it follows from the proof of Lemma 2.6 that $\Delta_{K}=\Delta_{J}$. Therefore $L_{K}=L_{J}$. This completes the proof.
§ 3. We first begin with next two lemmas which are of importance for the applications of character theory.

Lemma 3.1. Let H be a subgroup of a group G, χ an irreducible character of H. Let $\left\{g_{i}\right\}$ be the set of (H, H)-double coset representatives of G and put $H_{i}=H \cap{ }^{g i} H$. Then

$$
\left(\chi^{G}, \chi^{G}\right)_{G}=\sum_{i}\left(\chi,{ }^{g i} \chi\right)_{H_{i}} .
$$

Proof. This is a special case of the well-known result, due to Mackey (see [3]).

Lemma 3.2. Let H be a normal subgroup of a group G, χ an irreducible character of G. Assume that the kernel of χ does not contain H. Then, for $g \in G, \sum_{h \in H} \chi(g h)=0$.

Proof. It follows from the assumption and Frobenious reciprocity theorem that $\left(\chi_{H}, 1_{H}\right)_{H}=\left(\chi, 1_{H}^{G}\right)_{G}=0$, where 1_{H} is the principal character of H. We now denote by χ the matrix representation of G which affords χ and put $S=\sum_{n \in H} \chi(h)$. Since $H \unlhd G, S \chi(g)=\chi(g) S$ for $g \in G$. Hence Schur's lemma asserts that S is a scalar matrix and so $S=0$. Therefore taking the trace, we have $\sum_{h \in H} \chi(g h)=0$, as required.

Throughout the rest of this section, we assume the notations of our theorem. For shortness, write P, L, V instead of P_{J}, L_{J}, V_{J} respectively. For a fixed element $w \in W_{J, J}$, we denote by I_{w} the scalar product $\left(\tilde{\chi},{ }^{w} \tilde{\chi}_{)_{\cap} w_{P}}\right.$ and put $K=J \cap{ }^{w} J$.

3.3. If $L \neq{ }^{w} L$, then $I_{w}=0$.

Proof. By the canonical form for elements of $P \cap^{w} P$ established in Lemma 2.7, each element of $P \cap^{w} P$ has a unique expression in the form $x y z v$, where $x \in L_{K}, y \in L \cap^{w} V, z \in V \cap^{w} L, v \in V \cap^{w} V$. Hence we have

$$
I_{w}=\left|V \cap^{w} V\right| \cdot\left|P \cap^{w} P\right|^{-1} \sum_{x, y, z} \tilde{\chi}(x y z)^{\bar{w}} \tilde{\chi}(x y z),
$$

because $V \cap^{w} V$ is contained in the kernels of both characters $\tilde{\chi},{ }^{w} \tilde{\chi}$. Since $V \cap^{w} L, L \cap^{w} V$ are also contained in the kernels of $\tilde{\chi}$, ${ }^{w} \tilde{\chi}$ respectively and L normalizes V, we have

$$
I_{w}=\left|V \cap^{w} V\right| \cdot\left|P \cap^{w} P\right|^{-1} \sum_{x, y, z} \chi(x y)^{w} \chi(x z),
$$

where the sum is taken over all $x \in L_{K}, y \in L \cap^{w} V, z \in V \cap^{w} L$. As $L \cap^{w} V \unlhd L_{K}\left(L \cap^{w} V\right)$, we have, by Lemma 3.2 and assumption (ii),

$$
\sum_{y \in L_{n} w_{V}} \chi(x y)=0 .
$$

This implies $I_{w}=0$.
3.4. If $L={ }^{w} L$ and $w \neq 1$, then $I_{w}=0$.

Proof. By Lemma 2.7 it is easy to see that $I_{w}=\left(\chi,{ }^{w} \chi\right)_{L}$. Hence it follows from assumption (i) that $I_{w}=0$, as required.
3.5. Conclusion. By Lemmas 3.1, 3.3 and $3.4\left(\tilde{\chi}^{G}, \tilde{\chi}^{G}\right)_{G}=\sum_{w \in W_{J, V}} I_{w}$ $=I_{1}=1$. Hence $\tilde{\chi}^{G}$ is irreducible. This completes the proof of our theorem.
§4. Let $G U_{n}=G U\left(n, q^{2}\right)$ be the group of all non-singular $n \times n$ matrices g with elements in the Galois field $G F\left(q^{2}\right)$ satisfying $g^{*} j_{n} g$ $=j_{n}$, where g^{*} is the conjugate transpose of g and j_{n} is the matrix $\left[.^{\cdot} \cdot{ }^{1}\right]$ of degree $n, G L_{n}=G L\left(n, q^{2}\right)$ the group of all non-singular $n \times n$ matrices g with elements in $G F\left(q^{2}\right)$. We denote by $P_{n, k}$ the maximal parabolic subgroup of $G U_{n}$ which consists of all matrices of the forms $\left[\begin{array}{lll}a & d & e \\ & b & f \\ & & c\end{array}\right]$ with $a \in G L_{k}, b \in G U_{n-2 k}, a^{*} j_{k} c=j_{k}$.

Let take G, P_{J} in our theorem to be $G U_{n}, P_{n, k}$ respectively. Hence $L_{J} \cong G L_{k} \times G U_{n-2 k}$. Then we can get, by our theorem, some families of irreducible characters of $G U_{n}$ from those of $G L_{k}$ and $G U_{n-2 k}$.

Finally we give, for $n=4,5$, a list of the degrees of irreducible characters obtained by such a way.

Case of $n=4: q\left(q^{2}+1\right)\left(q^{3}+1\right),\left(q^{2}+1\right)\left(q^{3}+1\right),(q-1)\left(q^{2}+1\right)\left(q^{3}+1\right)$, $(q+1)\left(q^{2}+1\right)\left(q^{3}+1\right), q^{2}(q+1)\left(q^{3}+1\right),(q+1)\left(q^{3}+1\right),(q+1)\left(q^{2}-1\right)\left(q^{3}+1\right)$.

Case of $n=5: q^{3} s, q(q-1) s, s, q\left(q^{2}-q+1\right) s,(q-1)\left(q^{2}-q+1\right) s$, $\left(q^{2}-q+1\right) s, \quad\left(q^{3}+1\right) s, \quad(q+1)\left(q^{2}-1\right) s, \quad q^{2} t, \quad\left(q^{2}-1\right) t, \quad t, \quad$ where s $=\left(q^{2}+1\right)\left(q^{5}+1\right)$ and $t=\left(q^{3}+1\right)\left(q^{5}+1\right)$ (see [4]).

References

[1] R. W. Carter: Simple Groups of Lie Type. N. Y., John Wiley \& Sons (1972).
[2] C. W. Curtis: Reduction theorems for characters of finite groups of Lie type (to appear).
[3] W. Feit: Characters of Finite Groups. W. A. Benjamin, Inc. (1967).
[4] S. Nozawa: Certain characters of the finite general unitary groups $U\left(n, q^{2}\right)$ (to appear).
[5] T. A. Springer: Cusp Forms for Algebraic Groups. Lecture Notes in Math., 131 (1970). Springer-Verlag, N. Y., pp. 97-120.

